RESUMEN
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
RESUMEN
This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent in vitro drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.
RESUMEN
Lidocaine hydrochloride (HCl) 2% with 1:100,000 epinephrine (LW/E) is widely used to prevent pain during dental procedures and has been associated with injection sting, jittering effects, slow onset, and a bitter aftertaste. Since LW/E's introduction in 1948, no significant modifications have been proposed. This study aims to design and characterize an improved dental lidocaine HCl injectable formulation without epinephrine (LW/O/E) via buffers, sweeteners, and amino acids. LW/O/E injections were prepared with pH and osmolality values of 6.5-7.0 and 590-610 mOsm/kg. Using the electronic tongue (ETongue), the LW/O/E injectable formulations were characterized for viscosity, injectability, and taste analysis. The results were compared with the LW/E control. In vivo efficacy and anesthetic duration of the samples were measured through radiant heat tail-flick latency (RHTFL) and hot plate (HP) tests and local toxicity was assessed after a single intra-oral injection in Sprague Dawley rats (SDR). The viscosity and injectability values of the LW/O/E samples were found to be comparable to the LW/E injection. ETongue taste analysis showed an improvement in bitterness reduction of the LW/O/E samples compared to the LW/E formulation. Toxicity studies of samples in SDR showed minor and transient signs of erythema/eschar and edema. Anesthetic duration via RHTFL and HP paw withdrawal latency time in SDR were found to be comparable for the LW/O/E Sample 3A and the LW/E injection (p < 0.05). In conclusion, the buffered, higher osmolality and reduced bitterness developed LW/O/E formulation (Sample 3A) could be considered a promising alternative to the LW/E formulation for dental use.
RESUMEN
The oral bioavailability of sildenafil citrate is approximately 43%, primarily limited by the low aqueous solubility and first-pass effect. Considering the drug properties and biopharmaceutical considerations, this study aimed to develop an immediate release, taste masked orodispersible film (ODF) of sildenafil citrate for the efficient management of pulmonary arterial hypertension (PAH). The optimization was done by applying 32 full-factorial design. The drug-loaded film was prepared and evaluated for the physical and mechanical parameters like; thickness, disintegration time, tensile strength, elongation, swelling index, content uniformity, disintegration and in vitro drug release in pH 6.2 stimulated salivary fluid. The FTIR and DSC data proved excellent compatibility between the drug and polymers used. The time taken for disintegration by the optimized film was about 62.66 s, while the drug release was observed ~ 96% in 10 min. Pharmacokinetic studies exhibited better sildenafil plasma level (p < 0.05) and Cmax (p < 0.001) of orally disintegrating film which is significantly higher than the oral drug solution. The AUC0-8 (24874.425 ± 1234.45 ng. h/mL) in the oromucosal application was 1.2-fold more (p < 0.0001) than the control. The presence of sweetening and flavoring agents in the formulation masked the drug bitterness, resulting in a higher intake of the formulation in rats compared to the unmasked drug solution, as observed with in vivo taste masking studies. The importance of ODF as a feasible, effective, and optimal approach for delivering sildenafil citrate via oromucosal administration for the treatment of PAH was successfully highlighted by these results.
Asunto(s)
Disponibilidad Biológica , Liberación de Fármacos , Hipertensión Pulmonar , Citrato de Sildenafil , Solubilidad , Gusto , Citrato de Sildenafil/farmacocinética , Citrato de Sildenafil/administración & dosificación , Animales , Administración Oral , Ratas , Masculino , Hipertensión Pulmonar/tratamiento farmacológico , Ratas Wistar , Vasodilatadores/farmacocinética , Vasodilatadores/administración & dosificación , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodosAsunto(s)
Vacunas contra la COVID-19 , COVID-19 , Eficacia de las Vacunas , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Revisiones Sistemáticas como Asunto , Metaanálisis como AsuntoRESUMEN
Topological defects-extended lattice deformations that are robust against local defects and annealing-have been exploited to engineer novel properties in both hard and soft materials. Yet, their formation kinetics and nanoscale three-dimensional structure are poorly understood, impeding their benefits for nanofabrication. We describe the fabrication of a pair of topological defects in the volume of a single-diamond network (space group Fd 3 ¯ m) templated into gold from a triblock terpolymer crystal. Using X-ray nanotomography, we resolve the three-dimensional structure of nearly 70,000 individual single-diamond unit cells with a spatial resolution of 11.2 nm, allowing analysis of the long-range order of the network. The defects observed morphologically resemble the comet and trefoil patterns of equal and opposite half-integer topological charges observed in liquid crystals. Yet our analysis of strain in the network suggests typical hard matter behaviour. Our analysis approach does not require a priori knowledge of the expected positions of the nodes in three-dimensional nanostructured systems, allowing the identification of distorted morphologies and defects in large samples.
RESUMEN
INTRODUCTION: Retinal drug delivery has witnessed significant advancements in recent years, mainly driven by the prevalence of retinal diseases and the need for more efficient and patient-friendly treatment strategies. AREAS COVERED: Advancements in nanotechnology have introduced novel drug delivery platforms to improve bioavailability and provide controlled/targeted delivery to specific retinal layers. This review highlights various treatment options for retinal diseases. Additionally, diverse strategies aimed at enhancing delivery of small molecules and antibodies to the posterior segment such as implants, polymeric nanoparticles, liposomes, niosomes, microneedles, iontophoresis and mixed micelles were emphasized. A comprehensive overview of the special technologies currently under clinical trials or already in the clinic was provided. EXPERT OPINION: Ideally, drug delivery system for treating retinal diseases should be less invasive in nature and exhibit sustained release up to several months. Though topical administration in the form of eye drops offers better patient compliance, its clinical utility is limited by nature of the drug. There is a wide range of delivery platforms available, however, it is not easy to modify any single platform to accommodate all types of drugs. Coordinated efforts between ophthalmologists and drug delivery scientists are necessary while developing therapeutic compounds, right from their inception.
Asunto(s)
Sistemas de Liberación de Medicamentos , Enfermedades de la Retina , Humanos , Enfermedades de la Retina/tratamiento farmacológico , Animales , Nanotecnología , Disponibilidad Biológica , Soluciones Oftálmicas/administración & dosificación , Administración Oftálmica , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones de Acción Retardada , NanopartículasRESUMEN
Objectives: Vertebral fracture is both common and serious among adults, yet it often goes undiagnosed. This study aimed to develop a shape-based algorithm (SBA) for the automatic identification of vertebral fractures. Methods: The study included 144 participants (50 individuals with a fracture and 94 without a fracture) whose plain thoracolumbar spine X-rays were taken. Clinical diagnosis of vertebral fracture (grade 0 to 3) was made by rheumatologists using Genant's semiquantitative method. The SBA algorithm was developed to determine the ratio of vertebral body height loss. Based on the ratio, SBA classifies a vertebra into 4 classes: 0 = normal, 1 = mild fracture, 2 = moderate fracture, 3 = severe fracture). The concordance between clinical diagnosis and SBA-based classification was assessed at both person and vertebra levels. Results: At the person level, the SBA achieved a sensitivity of 100% and specificity of 62% (95% CI, 51%-72%). At the vertebra level, the SBA achieved a sensitivity of 84% (95% CI, 72%-93%), and a specificity of 88% (95% CI, 85%-90%). On average, the SBA took 0.3 s to assess each X-ray. Conclusions: The SBA developed here is a fast and efficient tool that can be used to systematically screen for asymptomatic vertebral fractures and reduce the workload of healthcare professionals.
RESUMEN
Meloxicam, a selective COX-2 inhibitor, has demonstrated clinical effectiveness in managing inflammation and acute pain. Although available in oral and parenteral formulations such as capsule, tablet, suspension, and solution, frequent administration is necessary to maintain therapeutic efficacy, which can increase adverse effects and patient non-compliance. To address these issues, several sustained drug delivery strategies such as oral, transdermal, transmucosal, injectable, and implantable drug delivery systems have been developed for meloxicam. These sustained drug delivery strategies have the potential to improve the therapeutic efficacy and safety profile of meloxicam, thereby reducing the frequency of dosing and associated gastrointestinal side effects. The choice of drug delivery system will depend on the desired release profile, the target site of inflammation, and the mode of administration. Overall, meloxicam sustained delivery systems offer better patient compliance, and reduce the side effects, thereby improving the clinical applications of this drug. Herein, we discuss in detail different strategies for sustained delivery of meloxicam.
Asunto(s)
Dolor Agudo , Analgésicos , Humanos , Meloxicam , Sistemas de Liberación de Medicamentos , InflamaciónRESUMEN
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
RESUMEN
Despite the high medicinal value of tiopronin, there are substantial adverse effects such as yellow skin, yellow eyes, muscle aches, etc. Therefore, there is a huge necessity to identify tiopronin using advanced sensors in provided samples. Recently, the preference for graphene quantum dots (GQDs) and inorganic nanomaterial-based fluorescent sensors for the detection of pharmaceuticals has been extensively documented due to their plentiful advantages. Therefore, in this work, the cobalt-doped GQDs decorated vanadium pentoxide nanosheet-based fluorescence switch 'Off-On' sensor (Co-GQDs@V2O5-NS) was designed for highly sensitive and selective detection of tiopronin. Briefly, the green synthesis of highly fluorescent Co-GQDs was carried out using a hydrothermal method. Meanwhile, the synthesis of V2O5-NS was synthesized using the liquid exfoliation method. The synthesis of Co-GQDs@V2O5-NS was accomplished wherein Co-GQDs adsorbed on the surface of V2O5-NS that offered the quenching of fluorescence of Co-GQDs. Afterward, the addition of tiopronin into the quenched probe disclosed the proportional recovery of fluorescence of Co-GQDs. Here, the addition of tiopronin provides the decomposition of V2O5-NS and conversion into the V4+ that aids in releasing the quenched fluorescence of Co-GQDs. The limit of detection and linearity range for tiopronin was found to be 1.43 ng/mL and 10-700 ng/mL, respectively. Moreover, it demonstrated high selectivity, good stability at experimental conditions, and practicality in analyzing tiopronin in spiked sample analysis. Hence, the designed Co-GQDs@V2O5-NS nanosized sensor enables high sensitivity, selectivity, simplicity, label-free, and eco-friendly tiopronin recognition. In the future, the utility of Co-GQDs@V2O5-NS can open a new door for sensing tiopronin in provided samples.
Asunto(s)
Cobalto , Grafito , Nanoestructuras , Puntos Cuánticos , Espectrometría de Fluorescencia , Compuestos de Vanadio , Puntos Cuánticos/química , Grafito/química , Cobalto/química , Compuestos de Vanadio/química , Nanoestructuras/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Límite de DetecciónRESUMEN
Despite rapid progress in tissue engineering, the repair and regeneration of bone defects remains challenging, especially for non-homogenous and complicated defects. We have developed and characterized biodegradable drug-eluting scaffolds for bone regeneration utilizing direct powder extrusion-based three-dimensional (3D) printing techniques. The PLGA scaffolds were fabricated using poly (lactic-co-glycolic acid) (PLGA) with inherent viscosities of 0.2 dl/g and 0.4 dl/g and ketoprofen. The effect of parameters such as the infill, geometry, and wall thickness of the drug carrier on the release kinetics of ketoprofen was studied. The release studies revealed that infill density significantly impacts the release performance, where 10% infill showed faster and almost complete release of the drug, whereas 50% infill demonstrated a sustained release. The Korsmeyer-Peppas model showed the best fit for release data irrespective of the PLGA molecular weight and infill density. It was demonstrated that printing parameters such as infill density, scaffold wall thickness, and geometry played an important role in controlling the release and, therefore, in designing customized drug-eluting scaffolds for bone regeneration.
RESUMEN
Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS: To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1ß and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS: SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION: SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.
Asunto(s)
Daño por Reperfusión , Células Ganglionares de la Retina , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Células Ganglionares de la Retina/metabolismo , Daño por Reperfusión/metabolismo , Isquemia/metabolismo , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo , ReperfusiónRESUMEN
Cyclosporine A (CsA) is a cyclic peptide immunosuppressant drug that is beneficial in the treatment of various ocular diseases. However, its ocular bioavailability in the posterior eye is limited due to its poor aqueous solubility. Conventional CsA formulations such as a solution or emulsion permeate poorly across the eye due to various static and dynamic barriers of the eye. Dissolvable microneedle (MN)-based patches can be used to overcome barrier properties and, thus, enhance the ocular bioavailability of CsA in the posterior eye. CsA-loaded dissolvable MN patches were fabricated using polyvinylpyrrolidone (PVP) and characterized for MN uniformity and sharpness using SEM. Further characterization for its failure force, penetration force, and depth of penetration were analyzed using a texture analyzer. Finally, the dissolution time, ex vivo permeation, and ocular distribution of cyclosporine were determined in isolated porcine eyes. PVP MNs were sharp, uniform with good mechanical properties, and dissolved within 5 min. Ocular distribution of CsA in a whole porcine eye perfusion model showed a significant increase of CsA levels in various posterior segment ocular tissues as compared to a topically applied ophthalmic emulsion (Restasis®) (P < 0.001). Dissolving MNs of CsA were prepared, and the MN arrays can deliver CsA to the back of the eye offering potential for treating various inflammatory diseases.
Asunto(s)
Ciclosporina , Ojo , Animales , Porcinos , Emulsiones , Inmunosupresores , Sistemas de Liberación de MedicamentosRESUMEN
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pérdida de Heterocigocidad , Genes Supresores de Tumor , Mutación/genética , Transformación Celular Neoplásica/genéticaRESUMEN
Vaccines against coronavirus disease 2019 (COVID-19) have been discovered within a very small duration of time as compared to the traditional way for the development of vaccines, which raised the question about the safety and efficacy of the approved vaccines. The purpose of this study is to look at the effectiveness and safety of vaccine platforms against the incidence of COVID-19. The literature search was performed on PubMed/Medline, Cochrane, and clinical trials.gov databases for studies published between 1 January 2020 and 19 February 2022. Preferred Reporting Items for Systemic Review and Meta-Analysis Statement guidelines were followed. Among 284 articles received by keywords, a total of 11 studies were eligible according to the inclusion and exclusion criteria (studies in special populations, e.g., pregnant women, paediatric patients, editorials, case reports, review articles, preclinical and in vitro studies) of the study. A total of 247,186 participants were considered for randomisation at baseline, among them, 129,572 (52.42%) were provided with vaccine (Intervention group) and 117,614 (47.58%) with the placebo (Control group). A pooled fold change estimation of 0.19 (95% CI: 0.12-0.31, p < 0.0001) showed significant protection against the incidence of COVID-19 in the vaccines received group versus the placebo group. mRNA based, inactivated vaccines and non-replicating viral vector-based vaccines showed significantly protection against the incidence of COVID-19 compared to placebo with pooled fold change estimation was 0.08 (95% CI: 0.06-0.10), 0.20 (95% CI: 0.14-0.29) and 0.36 (95% CI: 0.28-0.46), respectively. Injection site discomfort and fatigue were the most common side effect observed in mRNA, non-replicating viral vector, inactivated, and protein subunit-based vaccines. All the approved vaccines were found safe and efficacious but mRNA-based vaccines were found to be more efficacious against SARS-CoV-2 than other platforms.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Vacunas de Productos Inactivados/efectos adversosRESUMEN
Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.
RESUMEN
In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.
RESUMEN
Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.
Asunto(s)
Capsaicina , Obesidad , Humanos , Capsaicina/química , Obesidad/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Polímeros/uso terapéutico , Liberación de FármacosRESUMEN
This study presents the formulation and evaluation of an ABH Carbopol gel containing lorazepam (Ativan®), diphenhydramine hydrochloride (Benadryl®), and haloperidol (Haldol®) for treating chemotherapy-induced nausea and vomiting (CINV) in hospice patients. ABH PLO gel is widely used for this purpose due to its low cost and presumed efficacy. However, previous studies, including one conducted by the authors, have reported insufficient drug absorption from the ABH PLO gel. Here we hypothesized that the ABH Carbopol gel would provide superior percutaneous absorption of the drugs. ABH Carbopol gel was characterized for pH, viscosity, thermal properties, and infrared spectroscopy. The percutaneous absorption and skin retention of the gel was evaluated across porcine ear skin using Franz diffusion cells, and the drug concentrations were determined by high-performance liquid chromatography. The pH of the ABH Carbopol gel was found to be 6.80 ± 0.33, and the retention time of diphenhydramine, haloperidol, and lorazepam were 4.73, 7.11, and 18.69 minutes, respectively. The thermogram of the ABH Carbopol gel indicates the drugs were present in the dissolved state. Based on the flux data, the estimated steady-state concentration (Css) of diphenhydramine, haloperidol, and lorazepam were found to be 44.64 ng/ml, 2.58 ng/ml, and 20.1 ng/ml, respectively. These values were significantly higher than those obtained from the ABH PLO gel. In conclusion, the ABH Carbopol gel provides a promising alternative to the ABH PLO gel for treating CINV in hospice patients. Further studies are required to validate these findings in clinical settings.