Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 305(3): H410-9, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23709598

RESUMEN

Emerging evidence suggests that ventricular electrical remodeling (VER) is triggered by regional myocardial strain via mechanoelectrical feedback mechanisms; however, the ionic mechanisms underlying strain-induced VER are poorly understood. To determine its ionic basis, VER induced by altered electrical activation in dogs undergoing left ventricular pacing (n = 6) were compared with unpaced controls (n = 4). Action potential (AP) durations (APDs), ionic currents, and Ca(2+) transients were measured from canine epicardial myocytes isolated from early-activated (low strain) and late-activated (high strain) left ventricular regions. VER in the early-activated region was characterized by minimal APD prolongation, but marked attenuation of the AP phase 1 notch attributed to reduced transient outward K(+) current. In contrast, VER in the late-activated region was characterized by significant APD prolongation. Despite marked APD prolongation, there was surprisingly minimal change in ion channel densities but a twofold increase in diastolic Ca(2+). Computer simulations demonstrated that changes in sarcolemmal ion channel density could only account for attenuation of the AP notch observed in the early-activated region but failed to account for APD remodeling in the late-activated region. Furthermore, these simulations identified that cytosolic Ca(2+) accounted for APD prolongation in the late-activated region by enhancing forward-mode Na(+)/Ca(2+) exchanger activity, corroborated by increased Na(+)/Ca(2+) exchanger protein expression. Finally, assessment of skinned fibers after VER identified altered myofilament Ca(2+) sensitivity in late-activated regions to be associated with increased diastolic levels of Ca(2+). In conclusion, we identified two distinct ionic mechanisms that underlie VER: 1) strain-independent changes in early-activated regions due to remodeling of sarcolemmal ion channels with no changes in Ca(2+) handling and 2) a novel and unexpected mechanism for strain-induced VER in late-activated regions in the canine arising from remodeling of sarcomeric Ca(2+) handling rather than sarcolemmal ion channels.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Ventrículos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Potenciales de Acción , Animales , Estimulación Cardíaca Artificial , Simulación por Computador , Perros , Cinética , Masculino , Modelos Cardiovasculares , Potasio/metabolismo , Canales de Potasio/metabolismo , Sarcolema/metabolismo
2.
J Cardiovasc Pharmacol ; 60(2): 165-71, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22561361

RESUMEN

Torsade de Pointes (TdP) proarrhythmia is a major complication of therapeutic drugs that block the delayed rectifier current. QT interval prolongation, the principal marker used to screen drugs for proarrhythmia, is both insensitive and nonspecific. Consequently, better screening methods are needed. Drug-induced transmural dispersion of repolarization (TDR) is mechanistically linked to TdP. Therefore, we hypothesized that drug-induced enhancement of TDR is more predictive of proarrhythmia than QT interval. High-resolution transmural optical action potential mapping was performed in canine wedge preparations (n = 19) at baseline and after perfusion with 4 different QT prolonging drugs at clinically relevant concentrations. Two proarrhythmic drugs in patients (bepridil and E4031) were compared with 2 nonproarrhythmic drugs (risperidone and verapamil). Both groups prolonged the QT (all P < 0.02), least with the proarrhythmic drug bepridil, reaffirming that QT is a poor predictor of TdP. In contrast, TDR was enhanced only by proarrhythmic drugs (P < 0.03). Increased TDR was due to a preferential prolongation of midmyocardial cell, relative to epicardial cell, APD, whereas nonproarrhythmic drugs similarly prolonged both cell types. In contrast to QT prolongation, augmentation of TDR was induced by proarrhythmic but not nonproarrhythmic drugs, suggesting TDR is a superior preclinical marker of proarrhythmic risk during drug development.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Bepridil/toxicidad , Sistema de Conducción Cardíaco/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Piperidinas/toxicidad , Piridinas/toxicidad , Torsades de Pointes/inducido químicamente , Pruebas de Toxicidad , Animales , Perros , Relación Dosis-Respuesta a Droga , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Técnicas In Vitro , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Bloqueadores de los Canales de Potasio/farmacología , Medición de Riesgo , Risperidona/toxicidad , Factores de Tiempo , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatología , Pruebas de Toxicidad/métodos , Verapamilo/toxicidad , Imagen de Colorante Sensible al Voltaje
3.
Circ Arrhythm Electrophysiol ; 4(1): 79-86, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21163888

RESUMEN

BACKGROUND: Hypothermia is proarrhythmic, and, as the use of therapeutic hypothermia (TH) increases, it is critically important to understand the electrophysiological effects of hypothermia on cardiac myocytes and arrhythmia substrates. We tested the hypothesis that hypothermia-enhanced transmural dispersion of repolarization (DOR) is a mechanism of arrhythmogenesis in hypothermia. In addition, we investigated whether the degree of hypothermia, the rate of temperature change, and cooling versus rewarming would alter hypothermia-induced arrhythmia substrates. METHODS AND RESULTS: Optical action potentials were recorded from cells spanning the transmural wall of canine left ventricular wedge preparations at baseline (36°C), during cooling and during rewarming. Electrophysiological parameters were examined while varying the depth of hypothermia. On cooling to 26°C, DOR increased from 26±4 ms to 93±18 ms (P=0.021); conduction velocity decreased from 35±5 cm/s to 22±5 cm/s (P=0.010). On rewarming to 36°C, DOR remained prolonged, whereas conduction velocity returned to baseline. Conduction block and reentry was observed in all severe hypothermia preparations. Ventricular fibrillation/ventricular tachycardia was seen more during rewarming (4/5) versus cooling (2/6). In TH (n=7), cooling to 32°C mildly increased DOR (31±6 to 50±9, P=0.012), with return to baseline on rewarming and was associated with decreased arrhythmia susceptibility. Increased rate of cooling did not further enhance DOR or arrhythmogenesis. CONCLUSIONS: Hypothermia amplifies DOR and is a mechanism for arrhythmogenesis. DOR is directly dependent on the depth of cooling and rewarming. This provides insight into the clinical observation of a low incidence of arrhythmias in TH and has implications for protocols for the clinical application of TH.


Asunto(s)
Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Hipotermia Inducida/efectos adversos , Hipotermia/complicaciones , Hipotermia/fisiopatología , Índice de Severidad de la Enfermedad , Potenciales de Acción/fisiología , Animales , Arritmias Cardíacas/etiología , Perros , Electrocardiografía , Incidencia , Modelos Animales , Factores de Riesgo , Taquicardia Ventricular/epidemiología , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología , Temperatura , Factores de Tiempo , Fibrilación Ventricular/epidemiología , Fibrilación Ventricular/etiología , Fibrilación Ventricular/fisiopatología
4.
Heart Rhythm ; 6(2): 251-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19187920

RESUMEN

BACKGROUND: Although heart failure (HF) is closely associated with susceptibility to sudden cardiac death (SCD), the mechanisms linking contractile dysfunction to cardiac electrical instability are poorly understood. Cardiac alternans has also been closely associated with SCD, and has been linked to a mechanism for amplifying electrical heterogeneities in the heart. However, previous studies have focused on alternans in normal rather than failing myocardium. OBJECTIVE: This study sought to investigate the hypothesis that HF enhances susceptibility to arrhythmogenic cardiac alternans. METHODS: High-resolution transmural optical mapping was performed in canine wedge preparations from normal (n = 8) and HF (n = 8) hearts produced by rapid ventricular pacing. RESULTS: HF significantly (P < .004) lowered the heart rate (HR) threshold for action potential duration alternans (APD-ALT) from 236 +/- 25 beats/min to 185 +/- 25 beats/min. In dual optical mapping of action potentials and intracellular Ca experiments (n = 16), HF lowered the HR threshold for Ca-ALT (beat-to-beat alternations of cellular Ca cycling) from 238 +/- 35 to 177 +/- 26 beats/min (P < .005). Importantly: (1) Ca-ALT always either developed at slower HR or simultaneously with APD-ALT in the same cells, and (2) the magnitude of Ca-ALT and APD-ALT were closely correlated (P < .05). HF similarly lowered the HR threshold for Ca-ALT in isolated myocytes under nonalternating action potential clamp, indicating that HF enhances susceptibility to cellular alternans independent of HF-associated changes in repolarization. Importantly, HF significantly (P < .02) lowered the HR threshold for spatially discordant arrhythmogenic alternans (different regions of cells alternating in opposite phase, DIS-ALT). Ventricular fibrillation (VF) was induced in 88% of HF preparations, but only 12% of normal preparations (P < .003) and was uniformly preceded by development of DIS-ALT. CONCLUSION: Heart failure increases the susceptibility to arrhythmogenic cardiac alternans, which arises from HF-induced impairment in calcium cycling.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Potenciales de Acción , Análisis de Varianza , Animales , Calcio/metabolismo , Estimulación Cardíaca Artificial , Distribución de Chi-Cuadrado , Susceptibilidad a Enfermedades , Perros , Frecuencia Cardíaca/fisiología , Miocitos Cardíacos/fisiología , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...