Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Lancet ; 403(10432): 1164-1175, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38402887

RESUMEN

BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) has been engineered to improve the genetic stability of Sabin oral poliovirus vaccine (OPV) and reduce the emergence of circulating vaccine-derived polioviruses. This trial aimed to provide key safety and immunogenicity data required for nOPV2 licensure and WHO prequalification. METHODS: This phase 3 trial recruited infants aged 18 to <52 weeks and young children aged 1 to <5 years in The Gambia. Infants randomly assigned to receive one or two doses of one of three lots of nOPV2 or one lot of bivalent OPV (bOPV). Young children were randomised to receive two doses of nOPV2 lot 1 or bOPV. The primary immunogenicity objective was to assess lot-to-lot equivalence of the three nOPV2 lots based on one-dose type 2 poliovirus neutralising antibody seroconversion rates in infants. Equivalence was declared if the 95% CI for the three pairwise rate differences was within the -10% to 10% equivalence margin. Tolerability and safety were assessed based on the rates of solicited adverse events to 7 days, unsolicited adverse events to 28 days, and serious adverse events to 3 months post-dose. Stool poliovirus excretion was examined. The trial was registered as PACTR202010705577776 and is completed. FINDINGS: Between February and October, 2021, 2345 infants and 600 young children were vaccinated. 2272 (96·9%) were eligible for inclusion in the post-dose one per-protocol population. Seroconversion rates ranged from 48·9% to 49·2% across the three lots. The minimum lower bound of the 95% CIs for the pairwise differences in seroconversion rates between lots was -5·8%. The maximum upper bound was 5·4%. Equivalence was therefore shown. Of those seronegative at baseline, 143 (85·6%) of 167 (95% CI 79·4-90·6) infants and 54 (83·1%) of 65 (71·7-91·2) young children seroconverted over the two-dose nOPV2 schedule. The post-two-dose seroprotection rates, including participants who were both seronegative and seropositive at baseline, were 604 (92·9%) of 650 (95% CI 90·7-94·8) in infants and 276 (95·5%) of 289 (92·4-97·6) in young children. No safety concerns were identified. 7 days post-dose one, 78 (41·7%) of 187 (95% CI 34·6-49·1) infants were excreting the type 2 poliovirus. INTERPRETATION: nOPV2 was immunogenic and safe in infants and young children in The Gambia. The data support the licensure and WHO prequalification of nOPV2. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Poliomielitis , Poliovirus , Preescolar , Humanos , Lactante , Anticuerpos Antivirales , Formación de Anticuerpos , Gambia , Esquemas de Inmunización , Poliomielitis/epidemiología , Vacuna Antipolio Oral
2.
Lancet Infect Dis ; 23(5): 609-620, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36638819

RESUMEN

BACKGROUND: Three pneumococcal conjugate vaccines (PCVs) are currently licensed and WHO prequalified for supply by UN agencies. Here, we aimed to investigate the safety and immunogenicity of SIIPL-PCV compared with PHiD-CV and PCV13, when administered to infants according to a 2 + 1 schedule. METHODS: This single-centre, double-blind, active-controlled, randomised, phase 3 trial was done in Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine clinical trial facilities within two government health centres in the western region of The Gambia. Healthy, PCV-naive infants aged 6-8 weeks were enrolled if they weighed at least 3·5 kg and had no clinically significant health complaints, as determined by history and clinical examination. Eligible infants were randomly assigned (1:1:1) to receive either SIIPL-PCV, PHiD-CV, or PCV13 using permuted blocks of variable size. Parents and the trial staff assessing all study outcomes were masked to vaccine group. The first PCV vaccine was given with other routine Expanded Programme on Immunization vaccines when infants were aged 6-8 weeks (visit 1). At visit 2, routine vaccines alone (without a PCV) were administered. At visit 3, the second dose of the PCV was administered alongside other routine vaccines. At visit 4, a blood sample was collected. Visits 1-4 took place at intervals of 4 weeks. The booster PCV was administered at age 9-18 months (visit 5), with final follow-up 4 weeks after the booster (visit 6). The primary immunogenicity outcome compared the serotype-specific IgG geometric mean concentrations (GMCs) generated by SIIPL-PCV with those generated by PHiD-CV and PCV13, 4 weeks after the booster. We used descriptive 95% CIs without adjustment for multiplicity. Immunogenicity analyses were done in the per protocol population (defined as all children who received all the assigned study vaccines, who had an immunogenicity measurement available, and who had no protocol deviations that might interfere with the immunogenicity assessment). This trial was registered with the Pan African Clinical Trials Registry, PACTR201907754270299, and ClinicalTrials.gov, NCT03896477. FINDINGS: Between July 18 and Nov 14, 2019, 745 infants were assessed for study eligibility. Of these, 85 infants (11%) were ineligible and 660 (89%) were enrolled and randomly assigned to receive SIIPL-PCV (n=220), PHiD-CV (n=220), or PCV13 (n=220). 602 infants (91%) were included in the per protocol immunogenicity population. The median age at vaccination was 46 days (range 42-56). 342 infants (52%) were female and 318 (48%) were male. Post-booster serotype-specific IgG GMCs generated by SIIPL-PCV ranged from 1·54 µg/mL (95% CI 1·38-1·73) for serotype 5 to 12·46 µg/mL (11·07-14·01) for serotype 6B. Post-booster GMCs against shared serotypes generated by PHiD-CV ranged from 0·80 µg/mL (0·72-0·88) for serotype 5 to 17·31 µg/mL (14·83-20·20) for serotype 19F. Post-booster GMCs generated by PCV13 ranged from 2·04 µg/mL (1·86-2·24) for serotype 5 to 15·54 µg/mL (13·71-17·60) for serotype 6B. Post-booster IgG GMCs generated by SIIPL-PCV were higher than those generated by PHiD-CV for seven of the eight shared serotypes (1, 5, 6B, 7F, 9V, 14, and 23F). The GMC generated by serotype 19F was higher after PHiD-CV. The SIIPL-PCV to PHiD-CV GMC ratios for shared serotypes ranged from 0·64 (95% CI 0·52-0·79) for serotype 19F to 2·91 (2·47-3·44) for serotype 1. The serotype 1 GMC generated by SIIPL-PCV was higher than that generated by PCV13, whereas serotype 5, 6A, 19A, and 19F GMCs were higher after PCV13. The SIIPL-PCV to PCV13 GMC ratios ranged from 0·72 (0·60-0·87) for serotype 19A to 1·44 (1·23-1·69) for serotype 1. INTERPRETATION: SIIPL-PCV was safe and immunogenic when given to infants in The Gambia according to a 2 + 1 schedule. This PCV is expected to provide similar protection against invasive and mucosal pneumococcal disease to the protection provided by PCV13 and PHiD-CV, for which effectiveness data are available. Generating post-implementation data on the impact of SIIPL-PCV on pneumococcal disease endpoints remains important. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Anticuerpos Antibacterianos , Infecciones Neumocócicas , Vacunas Neumococicas , Niño , Femenino , Humanos , Lactante , Masculino , Gambia , Inmunogenicidad Vacunal , Inmunoglobulina G , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/efectos adversos , Vacunas Conjugadas/efectos adversos
3.
Lancet Infect Dis ; 21(6): 834-846, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33516293

RESUMEN

BACKGROUND: An affordable pneumococcal conjugate vaccine (PCV) is needed to ensure sustainable access in low-income and middle-income countries. This trial examined the immunogenicity and safety of a novel ten-valent PCV (SIIPL-PCV) containing serotypes 1, 5, 6A, 6B, 7F, 9V, 14, 19A, 19F, and 23F compared with the pneumococcal polysaccharide protein D-conjugate vaccine (PHiD-CV; Synflorix; GlaxoSmithKline; Brentford, UK). METHODS: In this single-centre, randomised, double-blind, phase 3, non-inferiority trial in The Gambia, healthy, PCV-naive infants aged 6-8 weeks were enrolled and assigned using permuted block randomisation to receive one of three lots of SIIPL-PCV or to PHiD-CV in a ratio of 2:2:2:3. Parents and all staff assessing study outcomes were masked to group assignment. Vaccines (0·5 mL SIIPL-PCV or 0·5 mL PHiD-CV) were administered at ages 6, 10, and 14 weeks by intramuscular injection. Primary immunogenicity outcomes, measured at age 18 weeks, were serotype-specific IgG geometric mean concentrations (GMCs) and seroresponse rates (IgG ≥ 0·35 µg/mL). Lot-to-lot equivalence (objective 1) was shown if the upper and lower bounds of the two-sided 95% CI around the GMC ratio for each pairwise lot-to-lot comparison was between the 0·5 and 2·0 equivalence margins for all ten serotypes. The immunogenicity of SIIPL-PCV was defined as being non-inferior to that of PHiD-CV (objective 2) if, for at least seven of the ten serotypes in SIIPL-PCV, the lower bound of the 97·5% CI for the GMC ratio was greater than 0·5, or the lower bound of the 97·5% CI for differences in seroresponse rate was greater than -10%. The GMC and seroresponse rates to serotypes 6A and 19A, which are not in PHiD-CV, were compared with those of the serotype in PHiD-CV that had the lowest seroresponse rate. Non-inferiority of the immune responses to antigens in the co-administered Expanded Programme on Immunization (EPI) vaccines (objective 3) was declared if the lower bound of the 95% CI for the difference between SIIPL-PCV and PHiD-CV in seroresponse rates, or GMC ratios for pertussis antigens, was greater than -10% (or 0·5 for pertussis antigens) for all vaccine antigens. Safety data were assessed according to treatment received at the first visit in infants who received at least one dose of study vaccine and for whom at least some post-vaccination safety data were available. The primary immunogenicity analysis was in the per-protocol immunogenicity population, which included infants who received all study vaccines and had immunogenicity measurements after vaccination and no major protocol deviations. This trial is registered at ClinicalTrials.gov (NCT03197376). FINDINGS: Between June 21, 2017, and Jan 29, 2018, 2250 infants were enrolled and randomly assigned to receive SIIPL-PCV (n=1503; 502 to lot 1, 501 to lot 2, and 500 to lot 3) or PHiD-CV (n=747). 1458 (97·0%) infants assigned to SIIPL-PCV and 724 (96·9%) assigned to PHiD-CV were included in the per-protocol primary immunogenicity analysis. Lot-to-lot equivalence was shown, with the lowest lower bound of the 95% CI for the GMC ratio being 0·52 (for serotype 6B in lot 2 vs lot 3) and the highest upper bound being 1·69 (for serotype 6B in lot 1 vs lot 2). SIIPL-PCV was non-inferior to PHiD-CV in terms of immunogenicity: the lower bound of the 97·5% CI for the GMC ratio was greater than 0·5 (the lowest being 0·67 for serotype 19F) and the lower bound of the 97·5% CI for the difference in seroresponse rate was greater than -10% (the lowest being -2·2% for serotype 6B) for all ten serotypes in SIIPL-PCV. The lowest seroresponse rate after PHiD-CV was to serotype 6B (76·7% [95% CI 73·4-79·7]). This serotype was therefore used for the comparisons with serotype 6A and 19A in SIIPL-PCV. Non-inferiority of immune responses to the EPI vaccines after co-administration with SIIPL-PCV compared with after co-administration with PHiD-CV was shown for all vaccine antigens included in the primary series. The lowest lower bound of the 95% CI for the difference in seroresponse rates was -7·1% for rotavirus antibody and for the GMC ratio for pertussis antigens was 0·62 for anti-pertussis toxoid. 1131 (75·2%) of 1503 infants in the SIIPL-PCV group and 572 (76·6%) of 747 in the PHiD-CV group had at least one unsolicited adverse event. 36 (2·4%) participants in the SIIPL-PCV group and 18 (2·4%) in the PHiD-CV group had a serious adverse event; none were considered related to vaccination. In infants who were selected to have solicited adverse events recorded, injection-site induration after primary vaccinations occurred in 27 (4·9%) of 751 infants who received SIIPL-PCV versus 34 (9·4%) of 364 who received PHiD-CV (p=0·0032). There were no other notable differences in the safety profiles of the two vaccines. One infant in the SIIPL-PCV group and two in the PHiD-CV group died during the study. The deaths were not considered to be related to study vaccination or study participation. INTERPRETATION: The immunogenicity of SIIPL-PCV was non-inferior to that of PHiD-CV, for which efficacy and effectiveness data against pneumococcal disease are available. The vaccine is safe and can be co-administered with routine EPI vaccines. The data generated in this trial have supported the licensure and pre-qualification of SIIPL-PCV, making the vaccine available for introduction into national immunisation programmes. Generating post-implementation data confirming vaccine impact remains important. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Inmunogenicidad Vacunal , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/toxicidad , Serogrupo , Vacunas Conjugadas , Método Doble Ciego , Femenino , Gambia , Voluntarios Sanos , Humanos , Programas de Inmunización , Lactante , Masculino , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA