Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 13(12): 1045, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522339

RESUMEN

Owing to its ability to induce cellular senescence, inhibit PCNA, and arrest cell division cycle by negatively regulating CDKs as well as being a primary target of p53, p21 is traditionally considered a tumor suppressor. Nonetheless, several reports in recent years demonstrated its pro-oncogenic activities such as apoptosis inhibition by cytosolic p21, stimulation of cell motility, and promoting assembly of cyclin D-CDK4/6 complex. These opposing effects of p21 on cell proliferation, supported by the observations of its inconsistent expression in human cancers, led to the emergence of the concept of "antagonistic duality" of p21 in cancer progression. Here we demonstrate that p21 negatively regulates basal autophagy at physiological concentration. Akt activation, upon p21 attenuation, driven ROS accumulation appears to be the major underlying mechanism in p21-mediated modulation of autophagy. We also find p21, as a physiological inhibitor of autophagy, to have oncogenic activity during early events of tumor development while its inhibition favors survival and growth of cancer cells in the established tumor. Our data, thereby, reveal the potential role of autophagy in antagonistic functional duality of p21 in cancer.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Proteína p53 Supresora de Tumor , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Autofagia
2.
Cell Death Dis ; 12(5): 464, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966046

RESUMEN

Chemokine receptor CXCR4 overexpression in solid tumors has been strongly associated with poor prognosis and adverse clinical outcome. However, blockade of CXCL12-CXCR4 signaling axis by inhibitors like Nox-A12, FDA approved CXCR4 inhibitor drug AMD3100 have shown limited clinical success in cancer treatment. Therefore, exclusive contribution of CXCR4-CXCL12 signaling in pro-tumorigenic function is questionable. In our pursuit to understand the impact of chemokine signaling in carcinogenesis, we reveal that instead of CXCR4-CXCL12 signaling, presence of CXCR4 intracellular protein augments paclitaxel resistance and pro-tumorigenic functions. In search of pro-apoptotic mechanisms for CXCR4 mediated drug resistance; we discover that DR5 is a new selective target of CXCR4 in breast and colon cancer. Further, we detect that CXCR4 directs the differential recruitment of transcription factors p53 and YY1 to the promoter of DR5 in course of its transcriptional repression. Remarkably, inhibiting CXCR4-ligand-mediated signals completely fails to block the above phenotype. Overexpression of different mutant versions of CXCR4 lacking signal transduction capabilities also result in marked downregulation of DR5 expression in colon cancer indeed confirms the reverse relationship between DR5 and intracellular CXCR4 protein expression. Irrespective of CXCR4 surface expression, by utilizing stable gain and loss of function approaches, we observe that intracellular CXCR4 protein selectively resists and sensitizes colon cancer cells against paclitaxel therapy in vitro and in vivo. Finally, performing TCGA data mining and using human breast cancer patient samples, we demonstrate that expression of CXCR4 and DR5 are inversely regulated. Together, our data suggest that targeting CXCR4 intracellular protein may be critical to dampen the pro-tumorigenic functions of CXCR4.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores CXCR4/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Línea Celular Tumoral , Femenino , Humanos
3.
Anal Biochem ; 410(2): 185-90, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21078291

RESUMEN

Electrochemical polymerization of acacia gum (AG) was initiated by electroactive polyaniline (PANI) monomers by radical cation formation and their coupling reactions with AG molecules. R(CT) values obtained from electrochemical impedance spectroscopy analysis at various AG concentrations with PANI were drastically decreased, confirming formation of conducting AG complexes with PANI. Quantitative analysis of ochratoxin-A (OTA) detection in electrolyte was carried out on rabbit antibody-immobilized PANI and PANI-AG matrices. The observed sensitivities of 50, 150, and 250 mg AG-added PANI matrix-based platforms were 3.3 ± 0.5, 10.0 ± 0.5, and 12.7 ± 0.5 µA/ng/ml, respectively. The sensitivity of only PANI electrodes was 2.6 ± 0.3 µA/ng/ml, which was relatively lower than AG-added PANI. This increase was due to the presence of glycan functional groups in AG molecules that supported the retention of activity of antibodies. In addition, enhanced electron transportation at AG-PANI film surface was observed due to formation of an electroactive polymer film of two different electroactive functions to contribute toward enhancement in the detection sensitivity.


Asunto(s)
Anticuerpos Inmovilizados/química , Espectroscopía Dieléctrica/métodos , Goma Arábiga/química , Microscopía Electrónica de Rastreo/métodos , Micotoxinas/análisis , Micotoxinas/química , Polimerizacion , Compuestos de Anilina/química , Animales , Técnicas Biosensibles/métodos , Electroquímica/métodos , Ocratoxinas/química , Polímeros/química , Conejos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...