Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 169(1): 120-131.e22, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340337

RESUMEN

Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct "bendability" and "meltability" of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Regiones Promotoras Genéticas , ARN Polimerasa I/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Transcripción Genética
2.
Nat Rev Mol Cell Biol ; 16(3): 129-43, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25693126

RESUMEN

Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.


Asunto(s)
Células Eucariotas/metabolismo , ARN Polimerasa II/química , ARN Mensajero/química , Factores Generales de Transcripción/química , Iniciación de la Transcripción Genética , Animales , ADN/química , ADN/metabolismo , Células Eucariotas/citología , Humanos , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismo
3.
Nat Commun ; 5: 4310, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25007739

RESUMEN

During transcription initiation at promoters of protein-coding genes, RNA polymerase (Pol) II assembles with TBP, TFIIB and TFIIF into a conserved core initiation complex that recruits additional factors. The core complex stabilizes open DNA and initiates RNA synthesis, and it is conserved in the Pol I and Pol III transcription systems. Here, we derive the domain architecture of the yeast core pol II initiation complex during transcription initiation. The yeast complex resembles the human initiation complex and reveals that the TFIIF Tfg2 winged helix domain swings over promoter DNA. An 'arm' and a 'charged helix' in TFIIF function in transcription start site selection and initial RNA synthesis, respectively, and apparently extend into the active centre cleft. Our model provides the basis for further structure-function analysis of the entire transcription initiation complex.


Asunto(s)
Proteínas del Complejo de Iniciación de Transcripción Pol1/química , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Espectrometría de Masas , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína/genética , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Iniciación de la Transcripción Genética/fisiología
4.
Nature ; 502(7473): 650-5, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24153182

RESUMEN

Transcription of ribosomal RNA by RNA polymerase (Pol) I initiates ribosome biogenesis and regulates eukaryotic cell growth. The crystal structure of Pol I from the yeast Saccharomyces cerevisiae at 2.8 Å resolution reveals all 14 subunits of the 590-kilodalton enzyme, and shows differences to Pol II. An 'expander' element occupies the DNA template site and stabilizes an expanded active centre cleft with an unwound bridge helix. A 'connector' element invades the cleft of an adjacent polymerase and stabilizes an inactive polymerase dimer. The connector and expander must detach during Pol I activation to enable transcription initiation and cleft contraction by convergent movement of the polymerase 'core' and 'shelf' modules. Conversion between an inactive expanded and an active contracted polymerase state may generally underlie transcription. Regulatory factors can modulate the core-shelf interface that includes a 'composite' active site for RNA chain initiation, elongation, proofreading and termination.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa I/química , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo
5.
Nature ; 493(7432): 437-40, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23151482

RESUMEN

The general transcription factor (TF) IIB is required for RNA polymerase (Pol) II initiation and extends with its B-reader element into the Pol II active centre cleft. Low-resolution structures of the Pol II-TFIIB complex indicated how TFIIB functions in DNA recruitment, but they lacked nucleic acids and half of the B-reader, leaving other TFIIB functions enigmatic. Here we report crystal structures of the Pol II-TFIIB complex from the yeast Saccharomyces cerevisiae at 3.4 Å resolution and of an initially transcribing complex that additionally contains the DNA template and a 6-nucleotide RNA product. The structures reveal the entire B-reader and protein-nucleic acid interactions, and together with functional data lead to a more complete understanding of transcription initiation. TFIIB partially closes the polymerase cleft to position DNA and assist in its opening. The B-reader does not reach the active site but binds the DNA template strand upstream to assist in the recognition of the initiator sequence and in positioning the transcription start site. TFIIB rearranges active-site residues, induces binding of the catalytic metal ion B, and stimulates initial RNA synthesis allosterically. TFIIB then prevents the emerging DNA-RNA hybrid duplex from tilting, which would impair RNA synthesis. When the RNA grows beyond 6 nucleotides, it is separated from DNA and is directed to its exit tunnel by the B-reader loop. Once the RNA grows to 12-13 nucleotides, it clashes with TFIIB, triggering TFIIB displacement and elongation complex formation. Similar mechanisms may underlie all cellular transcription because all eukaryotic and archaeal RNA polymerases use TFIIB-like factors, and the bacterial initiation factor sigma has TFIIB-like topology and contains the loop region 3.2 that resembles the B-reader loop in location, charge and function. TFIIB and its counterparts may thus account for the two fundamental properties that distinguish RNA from DNA polymerases: primer-independent chain initiation and product separation from the template.


Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad , Moldes Genéticos
6.
Artículo en Inglés | MEDLINE | ID: mdl-22750853

RESUMEN

The crystal structure of the regulatory domain of NMB2055, a putative MetR regulator from Neisseria meningitidis, is reported at 2.5 Šresolution. The structure revealed that there is a disulfide bond inside the predicted effector-binding pocket of the regulatory domain. Mutation of the cysteines (Cys103 and Cys106) that form the disulfide bond to serines resulted in significant changes to the structure of the effector pocket. Taken together with the high degree of conservation of these cysteine residues within MetR-related transcription factors, it is suggested that the Cys103 and Cys106 residues play an important role in the function of MetR regulators.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Neisseria meningitidis/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
EMBO J ; 30(23): 4755-63, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22056778

RESUMEN

During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.


Asunto(s)
ARN Polimerasa II , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , Lisina/metabolismo , Modelos Moleculares , Nucleótidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Saccharomyces cerevisiae/enzimología , Factores de Elongación Transcripcional/metabolismo
8.
EMBO J ; 30(7): 1302-10, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21386817

RESUMEN

Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP-associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5-RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N-terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C-terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.


Asunto(s)
Proteínas Cromosómicas no Histona/química , ARN Polimerasas Dirigidas por ADN/química , Pyrococcus furiosus/química , Pyrococcus furiosus/enzimología , Factores de Elongación Transcripcional/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Represoras/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido
9.
J Mol Biol ; 405(1): 173-84, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20974151

RESUMEN

We report the first crystal structures of a penicillin-binding protein (PBP), PBP3, from Pseudomonas aeruginosa in native form and covalently linked to two important ß-lactam antibiotics, carbenicillin and ceftazidime. Overall, the structures of apo and acyl complexes are very similar; however, variations in the orientation of the amino-terminal membrane-proximal domain relative to that of the carboxy-terminal transpeptidase domain indicate interdomain flexibility. Binding of either carbenicillin or ceftazidime to purified PBP3 increases the thermostability of the enzyme significantly and is associated with local conformational changes, which lead to a narrowing of the substrate-binding cleft. The orientations of the two ß-lactams in the active site and the key interactions formed between the ligands and PBP3 are similar despite differences in the two drugs, indicating a degree of flexibility in the binding site. The conserved binding mode of ß-lactam-based inhibitors appears to extend to other PBPs, as suggested by a comparison of the PBP3/ceftazidime complex and the Escherichia coli PBP1b/ceftoxamine complex. Since P. aeruginosa is an important human pathogen, the structural data reveal the mode of action of the frontline antibiotic ceftazidime at the molecular level. Improved drugs to combat infections by P. aeruginosa and related Gram-negative bacteria are sought and our study provides templates to assist that process and allows us to discuss new ways of inhibiting PBPs.


Asunto(s)
Antibacterianos/química , Inhibidores Enzimáticos/química , Proteínas de Unión a las Penicilinas/química , Pseudomonas aeruginosa/enzimología , Antibacterianos/metabolismo , Carbenicilina/química , Carbenicilina/metabolismo , Dominio Catalítico , Ceftazidima/química , Ceftazidima/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , Proteínas de Unión a las Penicilinas/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/química , Temperatura
10.
BMC Struct Biol ; 10: 10, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20478059

RESUMEN

BACKGROUND: Survival of the human pathogen, Neisseria meningitidis, requires an effective response to oxidative stress resulting from the release of hydrogen peroxide by cells of the human immune system. In N. meningitidis, expression of catalase, which is responsible for detoxifying hydrogen peroxide, is controlled by OxyR, a redox responsive LysR-type regulator. OxyR responds directly to intracellular hydrogen peroxide through the reversible formation of a disulphide bond between C199 and C208 in the regulatory domain of the protein. RESULTS: We report the first crystal structure of the regulatory domain of an OxyR protein (NMB0173 from N. meningitidis) in the reduced state i.e. with cysteines at positions 199 and 208. The protein was crystallized under reducing conditions and the structure determined to a resolution of 2.4 A. The overall fold of the Neisseria OxyR shows a high degree of similarity to the structure of a C199S mutant OxyR from E. coli, which cannot form the redox sensitive disulphide. In the neisserial structure, C199 is located at the start of helix alpha3, separated by 18 A from C208, which is positioned between helices alpha3 and alpha4. In common with other LysR-type regulators, full length OxyR proteins are known to assemble into tetramers. Modelling of the full length neisserial OxyR as a tetramer indicated that C199 and C208 are located close to the dimer-dimer interface in the assembled tetramer. The formation of the C199-C208 disulphide may thus affect the quaternary structure of the protein. CONCLUSION: Given the high level of structural similarity between OxyR from N. meningitidis and E. coli, we conclude that the redox response mechanism is likely to be similar in both species, involving the reversible formation of a disulphide between C199-C208. Modelling suggests that disulphide formation would directly affect the interface between regulatory domains in an OxyR tetramer which in turn may lead to an alteration in the spacing/orientation of the DNA-binding domains and hence the interaction of OxyR with its DNA binding sites.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis/metabolismo , Proteínas Represoras/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , ADN/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Estructura Terciaria de Proteína , Alineación de Secuencia
12.
J Immunol Methods ; 350(1-2): 14-21, 2009 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-19715696

RESUMEN

T-cell receptors (TCRs) are membrane proteins which recognize antigens with high specificity forming the basis of the cellular immune response. The study of these receptors has been limited by the challenges in expressing sufficient quantities of stable soluble protein. Here we report our systematic approach for generating soluble, (alpha)(beta)-TCRs, for X-ray crystallographic studies. By using small-scale expression screens, novel standardized quality control mechanisms and crystallization and imaging robots we were able to add significantly to the current TCR structural database. Our success in crystallizing both isolated TCRs and Major histocompatibility complex (MHC):TCR complexes has provided us with sufficient data to develop focused crystallization screens, which have proved generically useful for the crystallization of this family of proteins and complexes.


Asunto(s)
Cristalografía por Rayos X/métodos , Antígenos de Histocompatibilidad/química , Receptores de Antígenos de Linfocitos T alfa-beta/química , Animales , Antígenos de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad/metabolismo , Humanos , Estructura Cuaternaria de Proteína/fisiología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Solubilidad
13.
Nucleic Acids Res ; 37(14): 4545-58, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19474343

RESUMEN

LysR-type transcriptional regulators (LTTRs) form the largest family of bacterial regulators acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes. The LTTR, CrgA, from the human pathogen Neisseria meningitidis, is upregulated during bacterial-host cell contact. Here, we report the crystal structures of both regulatory domain and full-length CrgA, the first of a novel subclass of LTTRs that form octameric rings. Non-denaturing mass spectrometry analysis and analytical ultracentrifugation established that the octameric form of CrgA is the predominant species in solution in both the presence and absence of an oligonucleotide encompassing the CrgA-binding sequence. Furthermore, analysis of the isolated CrgA-DNA complex by mass spectrometry showed stabilization of a double octamer species upon DNA binding. Based on the observed structure and the mass spectrometry findings, a model is proposed in which a hexadecameric array of two CrgA oligomers binds to its DNA target site.


Asunto(s)
Proteínas Bacterianas/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo , Ultracentrifugación
14.
Immunity ; 30(3): 348-57, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303388

RESUMEN

Environmental factors account for 75% of the risk of developing multiple sclerosis (MS). Numerous infections have been suspected as environmental disease triggers, but none of them has consistently been incriminated, and it is unclear how so many different infections may play a role. We show that a microbial peptide, common to several major classes of bacteria, can induce MS-like disease in humanized mice by crossreacting with a T cell receptor (TCR) that also recognizes a peptide from myelin basic protein, a candidate MS autoantigen. Structural analysis demonstrates this crossreactivity is due to structural mimicry of a binding hotspot shared by self and microbial antigens, rather than to degenerate TCR recognition. Biophysical studies reveal that the autoreactive TCR binding affinity is markedly lower for the microbial (mimicry) peptide than for the autoantigenic peptide. Thus, these data suggest a possible explanation for the difficulty in incriminating individual infections in the development of MS.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Proteínas Bacterianas/inmunología , Imitación Molecular/inmunología , Péptidos/inmunología , Linfocitos T/inmunología , Animales , Células Cultivadas , Cerebelo/patología , Reacciones Cruzadas/inmunología , Drosophila , Escherichia coli/inmunología , Antígenos HLA-D/metabolismo , Antígeno HLA-DR2/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Modelos Moleculares , Esclerosis Múltiple/inmunología , Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Médula Espinal/patología , Linfocitos T/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-19255465

RESUMEN

The structure of the MarR-family transcription factor NMB1585 from Neisseria meningitidis has been solved using data extending to a resolution of 2.1 A. Overall, the dimeric structure resembles those of other MarR proteins, with each subunit comprising a winged helix-turn-helix (wHtH) domain connected to an alpha-helical dimerization domain. The spacing of the recognition helices of the wHtH domain indicates that NMB1585 is pre-configured for DNA binding, with a putative inducer pocket that is largely occluded by the side chains of two aromatic residues (Tyr29 and Trp53). NMB1585 was shown to bind to its own promoter region in a gel-shift assay, indicating that the protein acts as an auto-repressor.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 9): 797-801, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18765907

RESUMEN

Although LysR-type regulators (LTTRs) represent the largest family of transcriptional regulators in bacteria, the full-length structure of only one annotated LTTR (CbnR) has been deposited in the PDB. CrgA, a LTTR from pathogenic Neisseria meningitidis MC58, which is up-regulated upon bacterial cell contact with human epithelial cells, has been cloned, purified and crystallized. Crystals of full-length CrgA were obtained after buffer screening with a thermal shift assay and concentration with 0.2 M NDSB-256. Data were collected from two crystal forms of full-length CrgA belonging to space groups P2(1)2(1)2(1) and P2(1), diffracting to 3.0 and 3.8 A resolution and consistent with the presence of between six and ten and between ten and 20 copies of CrgA in the asymmetric unit, respectively. In addition, diffraction data were collected to 2.3 A resolution from the selenomethionine derivative of the regulatory domain of CrgA. The crystals belonged to space group P2(1) and contained two molecules in the asymmetric unit.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Neisseria meningitidis/química , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular , Neisseria meningitidis/patogenicidad , Factores de Transcripción/química , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo
17.
J Mol Biol ; 381(5): 1098-105, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18625239

RESUMEN

Uridine monophosphate (UMP) kinase is a conserved enzyme that catalyzes the ATP-driven conversion of uridylate monophosphate into uridylate diphosphate, an essential metabolic step. In prokaryotes, the enzyme exists as a homohexamer that is regulated by various metabolites. Whereas the enzymatic mechanism of UMP kinase (UK) is well-characterized, the molecular basis of its regulation remains poorly understood. Here we report the crystal structure of UK from Bacillus anthracis (BA1797) in complex with ATP at 2.82 A resolution. It reveals that the cofactor, in addition to binding in the active sites, also interacts with separate binding pockets located near the center of the hexameric structure. The existence of such an allosteric binding site had been predicted by biochemical studies, but it was not identified in previous crystal structures of prokaryotic UKs. We show that this putative allosteric pocket is conserved across different bacterial species, suggesting that it is a feature common to bacterial UKs, and we present a structural model for the allosteric regulation of this enzyme.


Asunto(s)
Sitio Alostérico , Bacillus anthracis/enzimología , Nucleósido-Fosfato Quinasa/química , Nucleótidos/metabolismo , Secuencia de Aminoácidos , Coenzimas/metabolismo , Cristalografía por Rayos X , Células Eucariotas/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Células Procariotas/enzimología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
18.
Artículo en Inglés | MEDLINE | ID: mdl-18391418

RESUMEN

The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 A resolution and shown to comprise a dimer formed by the exchange of two beta-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K(d) of 1.25 microM.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Dimerización , Datos de Secuencia Molecular , Neisseria meningitidis/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
19.
Artículo en Inglés | MEDLINE | ID: mdl-18097093

RESUMEN

A simple semi-automated microseeding procedure for nanolitre crystallization experiments is described. Firstly, a microseed stock solution is made from microcrystals using a Teflon bead. A dilution series of this microseed stock is then prepared and dispensed as 100 nl droplets into 96-well crystallization plates, facilitating the incorporation of seeding into high-throughput crystallization pipelines. This basic microseeding procedure has been modified to include additive-screening and cross-seeding methods. Five examples in which these techniques have been used successfully are described.


Asunto(s)
Proteínas Bacterianas/química , Nanotecnología/métodos , Proteínas Virales/química , Automatización , Cristalografía por Rayos X/métodos , Proteínas de Escherichia coli/química , Genómica , Modelos Moleculares , Conformación Molecular , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...