RESUMEN
Architectural distortion (AD) is the earliest sign of breast cancer that can be detected on a mammogram, and it is usually associated with malignant tumors. Breast cancer is one of the major causes of death among women, and the chance of cure can increase significantly when detected early. Computer-aided detection (CAD) systems have been used in clinical practice to assist radiologists with the task of detecting breast lesions. However, due to the complexity and subtlety of AD, its detection is still a challenge, even with the assistance of CAD. Recently, the fusion of descriptors has become a trend for improving the performance of computer vision algorithms. In this work, we evaluated some local texture descriptors and their possible combinations, considering different fusion approaches, for application in CAD systems to improve AD detection. In addition, we present a novel fusion-based texture descriptor, the Completed Mean Local Mapped Pattern (CMLMP), which is based on complementary information between three LMP operators (signal, magnitude and center) and the local differences between pixel values and the mean value of a neighborhood. We compared the performance of the proposed descriptor with two other well-known descriptors: the Completed Local Binary Pattern (CLBP) and the Completed Local Mapped Pattern (CLMP), for the task of detecting AD in 350 digital mammography clinical images. The results showed that the descriptor proposed in this work outperforms the others, for both individual and fused approaches. Moreover, the choice of the fusion operator is crucial because it results in different detection performances.
Asunto(s)
Neoplasias de la Mama , Mamografía , Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Femenino , HumanosRESUMEN
Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.