Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(17): 19560-19565, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708218

RESUMEN

The excellent emulsifying capacity of nanocellulose allows for the preparation of porous nanocellulose/polymer composites through the emulsion templating process. However, the effects of the polymer chemical structure and porosity on the material properties have not been extensively explored. Here, we discuss the effects of these two factors on the thermal and mechanical properties of the composites. Two types of porous nanocellulose/polymer composites were fabricated with styrene-divinylbenzene (poly(St-co-DVB)) or styrene-poly(ethylene glycol) dimethacrylate (poly(St-co-EGDMA)) copolymers as the polymer phases. The porosity of the composite was changed up to ∼50% v/v by varying the aqueous phase volume fraction in the original nanocellulose-stabilized w/o emulsions. As the porosity increased, the thermal conductivity of the composite decreased. The mechanical properties were strongly influenced by the polymer type; the nanocellulose/poly(St-co-DVB) composite showed stiff but brittle behavior, whereas the nanocellulose/poly(St-co-EGDMA) composite showed higher strength and toughness. In both types of composites, the nanocelluloses served as reinforcing agents, contributing to the improvement of the mechanical properties.

2.
Soft Matter ; 20(6): 1245-1252, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38231553

RESUMEN

In this study, the atypical swelling gelation of chitin physical hydrogels was investigated. Just by tuning the amount of the N-acetylation reagent, the degree of acetylation varied and mouldable chitin hydrogels with a wide variety of gel concentrations (0.2-6.4 wt%) were obtained. In response to the gel concentration, the mechanical properties ranged from swollen soft gels to shrunken rigid gels (compressive moduli of 4-310 kPa). The thus-prepared chitin hydrogels, which were composed of only chitin and water, exhibited high transparency and integrity. The swelling gelation of chitin physical hydrogels was achieved owing to both the positive charges of the amino groups inducing the osmotic pressure and the toughness of the crystalline nanofibrous network structure of the chitin hydrogels that endured the large volume change. These previously unnoticed advantageous aspects of chitin have pioneered a novel area of swellable physical gels that has been exclusive to chemical gels so far.

3.
Biomacromolecules ; 24(8): 3908-3916, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37499269

RESUMEN

Nanocellulose is emerging as a sustainable building block in materials science. Surface modification via polymer grafting has proven to be effective in tuning diverse material properties of nanocellulose, including wettability of films and the reinforcement effect in polymer matrices. Despite its widespread use in various environments, the structure of a single polymer-grafted nanocellulose remains poorly understood. Here, we investigate the morphologies of polymer-grafted CNFs at water-mica and air-mica interfaces by using all-atom molecular dynamics simulation and atomic force microscopy. We show that the morphologies of the polymer-grafted CNFs undergo a marked change in response to the surrounding environment due to variations in the conformation of the surface polymer chains. Our results provide novel insights into the molecular structure of polymer-grafted CNFs and can facilitate the design and development of innovative biomass-based nanomaterials.


Asunto(s)
Nanoestructuras , Polímeros , Polímeros/química , Silicatos de Aluminio , Estructura Molecular
4.
Small ; 19(30): e2302276, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37183294

RESUMEN

Nanocellulose is attracting attention in the field of materials science as a sustainable building block. Nanocellulose-based materials, such as films, membranes, and foams, are fabricated by drying colloidal dispersions. However, little is known about how the structure of a single nanocellulose changes during the complex drying process. Here, all-atom molecular dynamics simulations and atomic force microscopy is used to investigate the structural dynamics of single nanocellulose during drying. It is found that the twist morphology of the nanocellulose became localized along the fibril axis during the final stage of the drying process. Moreover, it is shown that conformational changes at C6 hydroxymethyl groups and glycoside bond is accompanied by the twist localization, indicating that the increase in the crystallinity occurred in the process. It is expected that the results will provide molecular insights into nanocellulose structures in material processing, which is helpful for the design of materials with advanced functionalities.

5.
Carbohydr Polym ; 312: 120828, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059556

RESUMEN

Tailoring the surface of biodegradable microparticles is important for various applications in the fields of cosmetics, biotechnology, and drug delivery. Chitin nanofibers (ChNFs) are one of the promising materials for surface tailoring owing to its functionality, such as biocompatibility and antibiotic properties. Here, we show biodegradable polymer microparticles densely coated with ChNFs. Cellulose acetate (CA) was used as the core material in this study, and ChNF coating was successfully carried out via a one-pot aqueous process. The average particle size of the ChNF-coated CA microparticles was approximately 6 µm, and the coating procedure had little effect on the size or shape of the original CA microparticles. The ChNF-coated CA microparticles comprised 0.2-0.4 wt% of the thin surface ChNF layers. Owing to the surface cationic ChNFs, the ζ-potential value of the ChNF-coated microparticles was +27.4 mV. The surface ChNF layer efficiently adsorbed anionic dye molecules, and repeatable adsorption/desorption behavior was exhibited owing to the coating stability of the surface ChNFs. The ChNF coating in this study was a facile aqueous process and was applicable to CA-based materials of various sizes and shapes. This versatility will open new possibilities for future biodegradable polymer materials that satisfy the increasing demand for sustainable development.

6.
Biomacromolecules ; 24(4): 1881-1887, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36951190

RESUMEN

The material properties of cellulose nanofibers (CNFs) are governed by the surface chemical structure of the fibers. The chemical structure-property relationships for monovalent carboxylated CNFs are well understood. Here, we report the basic sheet properties of divalent phosphorylated CNFs with different phosphorus contents and counterion types. All examined sheet properties, including conditioned and wet tensile properties, electrical resistivities, and fire-retardant properties of the CNF sheets, were greatly enhanced by the counterion exchange from the initial sodium ions to calcium or aluminum ions. The phosphorus content had significant influences only on the conditioned tensile and fire-retardant properties. In comparison to CNF sheets with monovalent carboxy groups, the CNF sheets with divalent phosphate groups were superior in terms of their wet tensile properties and fire-retardant properties. Our research shows that the combination of the divalent phosphate introduction and counterion exchange provides a successful strategy for the practical application of CNF sheets as antistatic materials and flexible substrates for electronic devices.


Asunto(s)
Retardadores de Llama , Nanofibras , Nanofibras/química , Celulosa/química , Electricidad
7.
Langmuir ; 39(12): 4362-4369, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36917026

RESUMEN

Cellulose nanofibers (CNFs) are attracting increasing attention as emulsifiers owing to their high emulsifying capacity, biocompatibility, and biodegradability. The emulsifying capacity has been experimentally shown to depend not only on the type of oil but also on the chemical structure of the CNF surface. However, the theoretical relationship between these two factors and emulsification remains unclear, and therefore, industrial applications are limited. Here, we assess the desorption energy (DE) of CNFs from the oil surface in o/w emulsion for various CNF/oil combinations to understand the mechanism of emulsification. Two types of surface-carboxylated CNFs having different cationic counterions, namely, sodium and tetrabutylammonium ions, were used as emulsifiers. The surface free energies of the CNFs were evaluated using inverse gas chromatography, and the nonpolar Lifshitz-van der Waals γLW, electron-acceptor γ+, and electron-donor γ- components were obtained from the chromatography profiles based on the van Oss-Chaudhury-Good theory. CNF with tetrabutylammonium ions was found to have a higher γ+ component than CNF with sodium ions. Therefore, the emulsion stability improved with oils having high γ- components owing to the increase in the DE value; this was verified through both theoretical calculations using a fibrous model and experimental dynamic interfacial tension measurements. Our approach is useful for predicting the emulsifying capacity of CNFs, and it should contribute toward the design of novel CNF-based emulsions.

8.
Biomacromolecules ; 24(2): 661-666, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36583854

RESUMEN

Regenerated and mercerized celluloses are widely used in our daily life and industries. Examples include clothes, medical supplies, and separation membranes. In such applications, the true density is an important derived physical quantity for refining the structural designs of regenerated and mercerized celluloses. Here, we report the true density-crystallinity correlation of regenerated and mercerized celluloses. Seven samples were prepared through either dissolution-regeneration or mercerization, and the true density of each sample was measured by helium gas pycnometry. The crystallinity was evaluated by solid-state 13C nuclear magnetic resonance spectroscopy based on the ratio of the carbon atoms in the crystallite core to those at crystallite surfaces and in the surrounding amorphous matrix. We found that the true density of regenerated and mercerized celluloses is directly proportional to crystallinity, irrespective of the preparation process. Additionally, the molecular packing density at the crystallite surfaces was found to be similar to that in the amorphous matrix.


Asunto(s)
Celulosa , Celulosa/química
9.
Nano Lett ; 23(3): 880-886, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36521008

RESUMEN

Clarifying the primary structure of nanomaterials is invaluable to understand how the nanostructures lead to macroscopic material functions. Nanocellulose is attracting attention as a sustainable building block in materials science. The surface of nanocellulose is often chemically modified by polymer grafting to tune the material properties, such as the viscoelastic properties in rheology modifiers and the reinforcement effect in composites. However, the structure, such as molecular conformation of the grafted polymer and the twist of the core nanocellulose, is not well understood. Here, we investigated the structure of polymer-grafted nanocellulose in the colloidal dispersion system by combining small-angle X-ray scattering measurement and all-atom molecular dynamics simulation. We demonstrated formation of the polymer brush layer on the nanocellulose surface in solvents, which explains the excellent colloidal stability. We also found that twisting of the nanocellulose in the core is suppressed by the existence of the polymer brush layer.

10.
Nano Lett ; 22(21): 8406-8412, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36283691

RESUMEN

Nanocellulose is regarded as a green and renewable nanomaterial that has attracted increased attention. In this study, we demonstrate that nanocellulose materials can exhibit high thermal conductivity when their nanofibrils are highly aligned and bonded in the form of filaments. The thermal conductivity of individual filaments, consisting of highly aligned cellulose nanofibrils, fabricated by the flow-focusing method is measured in dried condition using a T-type measurement technique. The maximum thermal conductivity of the nanocellulose filaments obtained is 14.5 W/m-K, which is approximately five times higher than those of cellulose nanopaper and cellulose nanocrystals. Structural investigations suggest that the crystallinity of the filament remarkably influence their thermal conductivity. Smaller diameter filaments with higher crystallinity, that is, more internanofibril hydrogen bonds and less intrananofibril disorder, tend to have higher thermal conductivity. Temperature-dependence measurements also reveal that the filaments exhibit phonon transport at effective dimension between 2D and 3D.


Asunto(s)
Nanopartículas , Nanoestructuras , Celulosa/química , Conductividad Térmica , Hidrodinámica , Nanoestructuras/química
11.
ACS Nano ; 16(11): 18390-18397, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36270629

RESUMEN

The orientation control and the formation of hierarchical structures of nanoscale components, such as bionanofibers and nanosheets, have attracted considerable research interest with the aim of achieving sophisticated functional materials. Herein, we report a simple and flexible strategy for constructing sophisticated hierarchical structures through electrophoretic and electrochemical deposition. Cellulose nanofibers (CNFs), which are used as model materials, are deposited on an anode in an aqueous dispersion and seamlessly oriented from horizontal to vertical relatively to the electrode by adjusting the applied voltage between the electrodes. The oriented CNF hydrogels not only exhibit anisotropic mechanical properties but also form complex orientations and hierarchical structures, such as cartilage- and plant stem-like configurations in response to electrode shape and applied voltage. This simple and flexible technique is expected to be applicable to various materials and contribute to a wide range of fields that include biomimicry, functional nanomaterials, and sustainable and functional moldings.

12.
Nanoscale Horiz ; 7(10): 1186-1191, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36040123

RESUMEN

Atomic-scale dent structures on the surfaces of cellulose nanofibers were detected by comparing the experimentally measured and computer-simulated widths of single nanofibers. These dent parts constituted at least 30-40% of the total length of the dispersed nanofibers, and deep dents induced the kinking and fragmentation of nanofibers.


Asunto(s)
Nanofibras , Celulosa/química , Nanofibras/química
13.
J R Soc Interface ; 19(191): 20220120, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642424

RESUMEN

Organisms use various forms and orientations of chitin nanofibres to make structures with a wide range of functions, from insect wings to mussel shells. Lophotrochozoan animals such as snails and annelid worms possess an ancient 'biomineralization toolkit', enabling them to flexibly and rapidly evolve unique hard parts. The scaly-foot snail is a gastropod endemic to deep-sea hydrothermal vents, unique in producing dermal sclerites used as sites of sulfur detoxification. Once considered to be strictly proteinaceous, recent data pointed to the presence of chitin in these sclerites, but direct evidence is still lacking. Here, we show that ß-chitin fibres (approx. 5% of native weight) are indeed the building framework, through a combination of solid-state nuclear magnetic resonance spectroscopy, wide-angle X-ray diffraction, and electron microscopy. The fibres are uniaxially oriented, likely forming a structural basis for column-like channels into which the scaly-foot snail is known to actively secrete sulfur waste-expanding the known function of chitinous hard parts in animals. Our results add to the existing evidence that animals are capable of modifying and co-opting chitin synthesis pathways flexibly and rapidly, in order to serve novel functions during their evolution.


Asunto(s)
Bivalvos , Nanofibras , Animales , Quitina/química , Caracoles , Azufre
14.
Biomacromolecules ; 22(12): 5214-5222, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34855397

RESUMEN

Phosphorylated cellulose nanofiber (CNF) is attracting attention as a newly emerged CNF with high functionality. However, many structural aspects of phosphorylated CNF remain unclear. In this study, we investigated the chemical structures and distribution of ionic functional groups on the phosphorylated CNF surfaces via liquid-state nuclear magnetic resonance measurements of colloidal dispersion. In addition to the monophosphate group, polyphosphate groups and cross-linked phosphate groups were introduced in the phosphorylated CNFs. The proportion of polyphosphate groups increased as the phosphorylation time increased, reaching ∼30% of all phosphate groups. Only a small amount of cross-linked phosphate groups existed in the phosphorylated CNF after a prolonged reaction time. Furthermore, phosphorylation of cellulose using urea and phosphoric acid was found to be regioselective at the C2 and C6 positions. There existed no significant difference between the surface degrees of substitution at the C2 and C6 positions of the phosphorylated CNFs.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Nanofibras/química
15.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34835797

RESUMEN

Cellulose nanofibers (CNFs) have excellent properties, such as high strength, high specific surface areas (SSA), and low coefficients of thermal expansion (CTE), making them a promising candidate for bio-based reinforcing fillers of polymers. A challenge in the field of CNF-reinforced composite research is to produce strong and transparent CNF/polymer composites that are sufficiently thick for use as load-bearing structural materials. In this study, we successfully prepared millimeter-thick, transparent CNF/polymer composites using CNF xerogels, with high porosity (~70%) and high SSA (~350 m2 g-1), as a template for monomer impregnation. A methacrylate was used as the monomer and was cured by UV irradiation after impregnation into the CNF xerogels. The CNF xerogels effectively reinforced the methacrylate polymer matrix, resulting in an improvement in the flexural modulus (up to 546%) and a reduction in the CTE value (up to 78%) while maintaining the optical transparency of the matrix polymer. Interestingly, the composites exhibited flame retardancy at high CNF loading. These unique features highlight the applicability of CNF xerogels as a reinforcing template for producing multifunctional and load-bearing polymer composites.

16.
Angew Chem Int Ed Engl ; 60(46): 24630-24636, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34490699

RESUMEN

Crystallites form a grain boundary or the inter-crystallite interface. A grain boundary is a structural defect that hinders the efficient directional transfer of mechanical stress or thermal phonons in crystal aggregates. We observed that grain boundaries within an aggregate of crystalline cellulose nanofibers (CNFs) were crystallized by enhancing their inter-crystallite interactions; multiple crystallites were coupled into single fusion crystals, without passing through a melting or dissolving state. Accordingly, the lowered crystallinity of CNFs, which has been considered irreversible, was recovered, and the thermal energy transfer in the aggregate was significantly improved. Other nanofibrous crystallites of chitin also showed a similar fusion phenomenon by enhancing the inter-crystallite interactions. Such crystallite fusion may naturally occur in biological structures with network skeletons of aggregated fibrillar crystallites having mechanical or thermal functions.

17.
Rev Sci Instrum ; 92(3): 034902, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820006

RESUMEN

Organic thin film materials with molecular ordering are gaining attention as they exhibit semiconductor characteristics. When using them for electronics, the thermal management becomes important, where heat dissipation is directional owing to the anisotropic thermal conductivity arising from the molecular ordering. However, it is difficult to evaluate the anisotropy by simultaneously measuring in-plane and cross-plane thermal conductivities of the film on a substrate because the film is typically as thin as tens to hundreds of nanometers and its in-plane thermal conductivity is low. Here, we develop a novel bidirectional 3ω system that measures the anisotropic thermal conductivity of thin films by patterning two metal wires with different widths and preparing the films on top and extracting the in-plane and cross-plane thermal conductivities using the difference in their sensitivities to the metal-wire width. Using the developed system, the thermal conductivity of spin-coated poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with thickness of 70 nm was successfully measured. The measured in-plane thermal conductivity of PEDOT:PSS film was as high as 2.9 W m-1 K-1 presumably due to the high structural ordering, giving an anisotropy of 10. The calculations of measurement sensitivity to the film thickness and thermal conductivities suggest that the device can be applied to much thinner films by utilizing metal wires with a smaller width.

18.
ACS Nano ; 15(2): 2730-2737, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33464042

RESUMEN

Cellulose is crystallized by plants and other organisms into fibrous nanocrystals. The mechanical properties of these nanofibers and the formation of helical superstructures with energy dissipating and adaptive optical properties depend on the ordering of polysaccharide chains within these nanocrystals, which is typically measured in bulk average. Direct measurement of the local polysaccharide chain arrangement has been elusive. In this study, we use the emerging technique of scanning electron diffraction to probe the packing of polysaccharide chains across cellulose nanofibers and to reveal local ordering of the chains in twisting sections of the nanofibers. We then use atomic force microscopy to shed light on the size dependence of the inherent driving force for cellulose nanofiber twisting. The direct measurement of crystalline twisted regions in cellulose nanofibers has important implications for understanding single-cellulose-fibril properties that influence the interactions between cellulose nanocrystals in dense assemblies. This understanding may enable cellulose extraction and separation processes to be tailored and optimized.


Asunto(s)
Nanofibras , Nanopartículas , Celulosa , Microscopía de Fuerza Atómica , Polisacáridos
19.
ACS Nano ; 15(1): 1436-1444, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33405895

RESUMEN

Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or "xerogels" that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (>400 m2 g-1) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06-0.07 W m-1 K-1), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.

20.
Macromol Rapid Commun ; 42(3): e2000501, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33225568

RESUMEN

The environment-friendly oxidation of cellulose by the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)/laccase/O2 system is an alternative route with huge potential to prepare cellulose nanofibers. It is found that the concentration of TEMPO significantly affects the oxidation efficiency. An effective method for improving the oxidation effect is to increase the TEMPO concentration and prolong the oxidation time. To clarify the rate-limited step of TEMPO/laccase/O2 oxidation of cellulose, the academically accepted oxidation process is divided into individual pathways. A series of experiments is conducted with laccase and the three forms of organocatalyst (TEMPO, oxoammonium (TEMPO+), and hydroxylamine (TEMPOH)) to simulate individual reactions and calculate the reaction rates. The concentrations of TEMPO and oxoammonium are monitored by EPR spectroscopy. The oxidation rate of TEMPO by laccase varies at different pH conditions, and laccase activity is much higher at pH 4.5. Other reactions without laccase involved express a higher reaction rate when the pH value increased. TEMPO is mainly regenerated through a comproportionation reaction between oxoammonium and hydroxylamine. The acceleration of TEMPO regeneration by laccase is not obvious. The results indicate that the rate-limited reaction in TEMPO/laccase/O2 oxidation is cellulose oxidation by TEMPO+.


Asunto(s)
Lacasa , Nanofibras , Celulosa , Óxidos N-Cíclicos , Lacasa/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA