Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37511454

RESUMEN

Atezolizumab is an immune checkpoint inhibitor (ICI) targeting PD-L1 for treatment of solid malignancies. Immune checkpoints control the immune tolerance, and the adverse events such as hepatotoxicity induced by ICIs are often considered as an immune-related adverse event (irAE). However, PD-L1 is also highly expressed in normal tissues, e.g., hepatocytes. It is still not clear whether, targeting PD-L1 on hepatocytes, the atezolizumab may cause damage to liver cells contributing to hepatotoxicity. Here, we reveal a novel mechanism by which the atezolizumab induces hepatotoxicity in human hepatocytes. We find that the atezolizumab treatment increases a release of LDH in the cell culture medium of human hepatocytes (human primary hepatocytes and THLE-2 cells), decreases cell viability, and inhibits the THLE-2 and THLE-3 cell growth. We demonstrate that both the atezolizumab and the conditioned medium (T-CM) derived from activated T cells can induce necroptosis of the THLE-2 cells, which is underscored by the fact that the atezolizumab and T-CM enhance the phosphorylation of RIP3 and MLKL proteins. Furthermore, we also show that necrostatin-1, a necrosome inhibitor, decreases the amount of phosphorylated RIP3 induced by the atezolizumab, resulting in a reduced LDH release in the culture media of the THLE-2 cells. This finding is further supported by the data that GSK872 (a RIP3 inhibitor) significantly reduced the atezolizumab-induced LDH release. Taken together, our data indicate that the atezolizumab induces PD-L1-mediated necrosome formation, contributing to hepatotoxicity in PD-L1+-human hepatocytes. This study provides the molecular basis of the atezolizumab-induced hepatotoxicity and opens a new avenue for developing a novel therapeutic approach to reducing hepatotoxicity induced by ICIs.


Asunto(s)
Antígeno B7-H1 , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Antígeno B7-H1/metabolismo , Necroptosis , Hepatocitos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
2.
J Control Release ; 361: 212-235, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517543

RESUMEN

The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Neoplasias/patología , Nanopartículas/química , Permeabilidad , Nanomedicina , Microambiente Tumoral
3.
Pharm Res ; 39(2): 251-261, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35146590

RESUMEN

PURPOSE: To evaluate a three-compartmental semi-physiological model for analysis of uptake clearance and efflux from brain tissue of the hydrophilic markers sucrose and mannitol, compared to non-compartmental techniques presuming unidirectional uptake. METHODS: Stable isotope-labeled [13C]sucrose and [13C]mannitol (10 mg/kg each) were injected as IV bolus into the tail vein of awake young adult mice. Blood and brain samples were taken after different time intervals up to 8 h. Plasma and brain concentrations were quantified by UPLC-MS/MS. Brain uptake clearance (Kin) was analyzed using either the single-time point analysis, the multiple time point graphical method, or by fitting the parameters of a three-compartmental model that allows for symmetrical exchange across the blood-brain barrier and an additional brain efflux clearance. RESULTS: The three-compartment model was able to describe the experimental data well, yielding estimates for Kin of sucrose and mannitol of 0.068 ± 0.005 and 0.146 ± 0.020 µl.min-1.g-1, respectively, which were significantly different (p < 0.01). The separate brain efflux clearance had values of 0.693 ± 0.106 (sucrose) and 0.881 ± 0.20 (mannitol) µl.min-1.g-1, which were not statistically different. Kin values obtained by single time point and multiple time point analyses were dependent on the terminal sampling time and showed declining values for later time points. CONCLUSIONS: Using the three-compartment model allows determination of Kin for small molecule hydrophilic markers with low blood-brain barrier permeability. It also provides, for the first time, an estimate of brain efflux after systemic administration of a marker, which likely represents bulk flow clearance from brain tissue.


Asunto(s)
Encéfalo/metabolismo , Manitol/farmacocinética , Modelos Biológicos , Sacarosa/farmacocinética , Animales , Cromatografía Liquida , Vías de Eliminación de Fármacos , Inyecciones Intravenosas , Masculino , Manitol/administración & dosificación , Manitol/sangre , Ratones Endogámicos C57BL , Permeabilidad , Sacarosa/administración & dosificación , Sacarosa/sangre , Espectrometría de Masas en Tándem , Distribución Tisular , Vigilia
4.
Angiogenesis ; 25(3): 373-396, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35103877

RESUMEN

Lymphangiogenesis is an essential physiological process but also a determining factor in vascular-related pathological conditions. Angiopoietin-2 (Ang2) plays an important role in lymphatic vascular development and function and its upregulation has been reported in several vascular-related diseases, including cancer. Given the established role of the small GTPase RhoA on cytoskeleton-dependent endothelial functions, we investigated the relationship between RhoA and Ang2-induced cellular activities. This study shows that Ang2-driven human dermal lymphatic endothelial cell migration depends on RhoA. We demonstrate that Ang2-induced migration is independent of the Tie receptors, but dependent on ß1 integrin-mediated RhoA activation with knockdown, pharmacological approaches, and protein sequencing experiments. Although the key proteins downstream of RhoA, Rho kinase (ROCK) and myosin light chain, were activated, blockade of ROCK did not abrogate the Ang2-driven migratory effect. However, formins, an alternative target of RhoA, were identified as key players, and especially FHOD1. The Ang2-RhoA relationship was explored in vivo, where lymphatic endothelial RhoA deficiency blocked Ang2-induced lymphangiogenesis, highlighting RhoA as an important target for anti-lymphangiogenic treatments.


Asunto(s)
Angiopoyetina 2 , Linfangiogénesis , Proteína de Unión al GTP rhoA , Angiopoyetina 2/metabolismo , Células Endoteliales/metabolismo , Forminas/metabolismo , Humanos , Integrina beta1/metabolismo , Receptor TIE-2/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
5.
ACS Chem Neurosci ; 13(2): 217-228, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34978174

RESUMEN

The dopaminergic system is involved in the regulation of immune responses in various homeostatic and disease conditions. For conditions such as Parkinson's disease and multiple sclerosis (MS), pharmacological modulation of dopamine (DA) system activity is thought to have therapeutic relevance, providing the basis for using dopaminergic agents as a treatment of relevant states. In particular, it was proposed that restoration of DA levels may inhibit neuroinflammation. We have recently reported a new class of dopamine transporter (DAT) inhibitors with high selectivity to the DAT over other G-protein coupled receptors tested. Here, we continue their evaluation as monoamine transporter inhibitors. Furthermore, we show that the urea-like DAT inhibitor (compound 5) has statistically significant anti-inflammatory effects and attenuates motor deficits and pain behaviors in the experimental autoimmune encephalomyelitis model mimicking clinical signs of MS. To the best of our knowledge, this is the first study reporting the beneficial effects of DAT inhibitor-based treatment in animals with induced autoimmune encephalomyelitis, and the observed results provide additional support to the model of DA-related neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Urea
6.
Cancers (Basel) ; 13(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804681

RESUMEN

Anti-angiogenic approaches targeting the vascular endothelial growth factor (VEGF) signaling pathway have been a significant research focus during the past decades and are well established in clinical practice. Despite the expectations, their benefit is ephemeral in several diseases, including specific cancers. One of the most prominent side effects of the current, VEGF-based, anti-angiogenic treatments remains the development of resistance, mostly due to the upregulation and compensatory mechanisms of other growth factors, with the basic fibroblast growth factor (bFGF) being at the top of the list. Over the past decade, several anti-angiogenic approaches targeting simultaneously different growth factors and their signaling pathways have been developed and some have reached the clinical practice. In the present review, we summarize the knowledge regarding resistance mechanisms upon anti-angiogenic treatment, mainly focusing on bFGF. We discuss its role in acquired resistance upon prolonged anti-angiogenic treatment in different tumor settings, outline the reported resistance mechanisms leading to bFGF upregulation, and summarize the efforts and outcome of combined anti-angiogenic approaches to date.

7.
FASEB J ; 35(3): e21425, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33566443

RESUMEN

Histamine-induced vascular leakage is a core process of allergic pathologies, including anaphylaxis. Here, we show that glycolysis is integral to histamine-induced endothelial barrier disruption and hyperpermeability. Histamine rapidly enhanced glycolysis in endothelial cells via a pathway that involved histamine receptor 1 and phospholipase C beta signaling. Consistently, partial inhibition of glycolysis with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) prevented histamine-induced hyperpermeability in human microvascular endothelial cells, by abolishing the histamine-induced actomyosin contraction, focal adherens junction formation, and endothelial barrier disruption. Pharmacologic blockade of glycolysis with 3PO in mice reduced histamine-induced vascular hyperpermeability, prevented vascular leakage in passive cutaneous anaphylaxis and protected from systemic anaphylaxis. In conclusion, we elucidated the role of glycolysis in histamine-induced disruption of endothelial barrier integrity. Our data thereby point to endothelial glycolysis as a novel therapeutic target for human pathologies related to excessive vascular leakage, such as systemic anaphylaxis.


Asunto(s)
Permeabilidad Capilar/fisiología , Células Endoteliales/efectos de los fármacos , Glucólisis/fisiología , Histamina/farmacología , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Anafilaxia/metabolismo , Anafilaxia/patología , Animales , Permeabilidad Capilar/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ratones , Fosfolipasa C beta/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Eur J Med Chem ; 209: 112866, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039722

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Urea/análogos & derivados , Urea/farmacología , Animales , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Diseño de Fármacos , Femenino , Humanos , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/metabolismo , Urea/farmacocinética
9.
ACS Pharmacol Transl Sci ; 3(5): 931-947, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33073192

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are a family of rare lysosomal storage disorders. The most common form of NCL occurs in children harboring a mutation in the CLN3 gene. This form is lethal with no existing cure or treatment beyond symptomatic relief. The pathophysiology of CLN3 disease is complex and poorly understood, with current in vivo and in vitro models failing to identify pharmacological targets for therapeutic intervention. This study reports the characterization of the first CLN3 patient-specific induced pluripotent stem cell (iPSC)-derived model of the blood-brain barrier and establishes the suitability of an iPSC-derived neuron model of the disease to facilitate compound screening. Upon differentiation, hallmarks of CLN3 disease are apparent, including lipofuscin and subunit c of mitochondrial ATP synthase accumulation, mitochondrial dysfunction, and attenuated Bcl-2 expression. The model led to the identification of small molecules that cleared subunit c accumulation by mTOR-independent modulation of autophagy, conferred protective effects through induction of Bcl-2 and rescued mitochondrial dysfunction.

10.
Angiogenesis ; 23(4): 621-636, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681389

RESUMEN

Pleiotrophin (PTN) has a moderate stimulatory effect on endothelial cell migration through ανß3 integrin, while it decreases the stimulatory effect of vascular endothelial growth factor A (VEGFA) and inhibits cell migration in the absence of ανß3 through unknown mechanism(s). In the present work, by using a multitude of experimental approaches, we show that PTN binds to VEGF receptor type 2 (VEGFR2) with a KD of 11.6 nM. Molecular dynamics approach suggests that PTN binds to the same VEGFR2 region with VEGFA through its N-terminal domain. PTN inhibits phosphorylation of VEGFR2 at Tyr1175 and still stimulates endothelial cell migration in the presence of a selective VEGFR2 tyrosine kinase inhibitor. VEGFR2 downregulation by siRNA or an anti-VEGFR2 antibody that binds to the ligand-binding VEGFR2 domain also induce endothelial cell migration, which is abolished by a function-blocking antibody against ανß3 or the peptide PTN112-136 that binds ανß3 and inhibits PTN binding. In cells that do not express ανß3, PTN decreases both VEGFR2 Tyr1175 phosphorylation and cell migration in a VEGFR2-dependent manner. Collectively, our data identify VEGFR2 as a novel PTN receptor involved in the regulation of cell migration by PTN and contribute to the elucidation of the mechanism of activation of endothelial cell migration through the interplay between VEGFR2 and ανß3.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular , Citocinas/metabolismo , Integrina alfaVbeta3/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Proteínas Portadoras/química , Línea Celular Tumoral , Citocinas/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Modelos Biológicos , Simulación de Dinámica Molecular , Neovascularización Fisiológica , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Dominios Proteicos , Ratas , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Sci Rep ; 9(1): 11666, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406143

RESUMEN

Imbalanced angiogenesis is a characteristic of several diseases. Rho GTPases regulate multiple cellular processes, such as cytoskeletal rearrangement, cell movement, microtubule dynamics, signal transduction and gene expression. Among the Rho GTPases, RhoA, Rac1 and Cdc42 are best characterized. The role of endothelial Rac1 and Cdc42 in embryonic development and retinal angiogenesis has been studied, however the role of endothelial RhoA is yet to be explored. Here, we aimed to identify the role of endothelial RhoA in endothelial cell functions, in embryonic and retinal development and explored compensatory mechanisms. In vitro, RhoA is involved in cell proliferation, migration and tube formation, triggered by the angiogenesis inducers Vascular Endothelial Growth Factor (VEGF) and Sphingosine-1 Phosphate (S1P). In vivo, through constitutive and inducible endothelial RhoA deficiency we tested the role of endothelial RhoA in embryonic development and retinal angiogenesis. Constitutive endothelial RhoA deficiency, although decreased survival, was not detrimental for embryonic development, while inducible endothelial RhoA deficiency presented only mild deficiencies in the retina. The redundant role of RhoA in vivo can be attributed to potential differences in the signaling cues regulating angiogenesis in physiological versus pathological conditions and to the alternative compensatory mechanisms that may be present in the in vivo setting.


Asunto(s)
Endotelio Vascular/metabolismo , Neovascularización Fisiológica , Proteína de Unión al GTP rhoA/deficiencia , Proteína de Unión al GTP rhoA/metabolismo , Animales , Línea Celular , Movimiento Celular , Proliferación Celular , Embrión de Mamíferos , Desarrollo Embrionario , Endotelio Vascular/citología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisofosfolípidos/metabolismo , Masculino , Ratones Transgénicos , Vasos Retinianos/embriología , Vasos Retinianos/metabolismo , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína de Unión al GTP rhoA/genética
12.
J Vis Exp ; (145)2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30985742

RESUMEN

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Similar to other cancer cells, a fundamental characteristic of LC cells is unregulated proliferation and cell division. Inhibition of proliferation by halting cell cycle progression has been shown to be a promising approach for cancer treatment, including LC. miRNA therapeutics have emerged as important post-transcriptional gene regulators and are increasingly being studied for use in cancer treatment. In recent work, we utilized two miRNAs, miR-143 and miR-506, to regulate cell cycle progression. A549 non-small cell lung cancer (NSCLC) cells were transfected, gene expression alterations were analyzed, and apoptotic activity due to the treatment was finally analyzed. Downregulation of cyclin-dependent kinases (CDKs) were detected (i.e., CDK1, CDK4 and CDK6), and cell cycle halted at the G1/S and G2/M phase transitions. Pathway analysis indicated potential antiangiogenic activity of the treatment, which endows the approach with multifaceted activity. Here, described are the methodologies used to identify miRNA activity regarding cell cycle inhibition, induction of apoptosis, and effects of treatment on endothelial cells by inhibition of angiogenesis. It is hoped that the methods presented here will support future research on miRNA therapeutics and corresponding activity and that the representative data will guide other researchers during experimental analyses.


Asunto(s)
Ciclo Celular/genética , MicroARNs/genética , Neovascularización Patológica/genética , Células A549 , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , División Celular/genética , Quinasas Ciclina-Dependientes/genética , Regulación hacia Abajo/genética , Humanos , Neoplasias Pulmonares/patología
13.
Methods Mol Biol ; 1952: 211-218, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30825177

RESUMEN

Angiogenesis is a well-coordinated physiological process that leads to new blood vessel formation. Physiologically, angiogenesis is more prominent during development and wound healing and its dysregulation drives or is related to several diseases, including cancer. The endothelial cells are the main regulators of the angiogenic process, and thus the angiogenic outcome is assessed based on the effect on endothelial cell functions. Several in vitro and in vivo techniques have been developed to assess the effect of various factors on angiogenesis. Compared to the in vivo techniques, the in vitro techniques are considered less physiologically relevant. This has been partially overcome by the development of 3-dimensional (3D) in vitro models, one of which is the spheroid assay or 3D sprouting assay that exploits the effect of the extracellular matrix to endothelial cell functions. This chapter focuses on the description of the spheroid assay and mentions the variations and potential applications this assay can have.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Endoteliales/fisiología , Matriz Extracelular/metabolismo , Neovascularización Fisiológica , Esferoides Celulares/fisiología , Colágeno/metabolismo , Células Endoteliales/citología , Células Endoteliales/ultraestructura , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microscopía Confocal/métodos , Esferoides Celulares/citología , Esferoides Celulares/ultraestructura , Coloración y Etiquetado/métodos
15.
Bioorg Med Chem Lett ; 28(23-24): 3652-3657, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389290

RESUMEN

Several recent reports have highlighted the feasibility of the use of penfluridol, a well-known antipsychotic agent, as a chemotherapeutic agent. In vivo experiments have confirmed the cytotoxic activity of penfluridol in triple-negative breast cancer model, lung cancer model, and further studies have been proposed to assess its anticancer activity and viability for the treatment of glioblastomas. However, penfluridol anticancer activity was observed at a dosage significantly higher than that administered in antipsychotic therapy, thus raising the concern for the potential onset of CNS side effects in patients undergoing intensive pharmacological treatment. In this study, we evaluate the potential CNS toxicity of penfluridol side by side with a set of analogs.


Asunto(s)
Antineoplásicos/química , Penfluridol/análogos & derivados , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antipsicóticos/química , Antipsicóticos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Penfluridol/metabolismo , Penfluridol/farmacología , Penfluridol/uso terapéutico , Unión Proteica , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
16.
Sci Rep ; 8(1): 10495, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002440

RESUMEN

Lung cancer (LC) is the leading cause of cancer-related deaths. Downregulation of CDK1, 4 and 6, key regulators of cell cycle progression, correlates with decreased LC cell proliferation. Enforced expression of miRNAs (miRs) is a promising approach to regulate genes. Here, we study the combinatorial treatment of miR-143 and miR-506 to target the CDK1, 4/6 genes, respectively. We analyzed the differential expression of CDK genes by qPCR, and western blot, and evaluated changes in the cell cycle distribution upon combinatorial treatment. We used an antibody microarray analysis to evaluate protein expression, focusing on the cell cycle pathway, and performed RNA-sequencing for pathway analysis. The combinatorial miR treatment significantly downregulated CDK1, 4 and 6 expression, and induced a shift of the cell cycle populations, indicating a G1 and G2 cell cycle block. The two miRs induces strong cytotoxic activity, with potential synergism, and a significant Caspase 3/7 activation. We identified a strong inhibition of tube formation in the presence or absence VEGF in an in vitro angiogenesis model. Together with the pathways analysis of the RNA-sequencing data, our findings establish the combinatorial miR transfection as a viable strategy for lung cancer treatment that merits further investigation.


Asunto(s)
Terapia Genética/métodos , Neoplasias Pulmonares/terapia , MicroARNs/genética , Neovascularización Patológica/terapia , Células A549 , Apoptosis/genética , Proteína Quinasa CDC2/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Regulación hacia Abajo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neovascularización Patológica/genética , Cultivo Primario de Células , Transfección/métodos , Microambiente Tumoral/genética
17.
JCI Insight ; 3(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29415879

RESUMEN

Several reports have demonstrated that mouse Cx3cr1 signaling promotes monocyte/macrophage survival. In agreement, we previously found that, in a mouse model of systemic candidiasis, genetic deficiency of Cx3cr1 resulted in increased mortality and impaired tissue fungal clearance associated with decreased macrophage survival. We translated this finding by showing that the dysfunctional CX3CR1 variant CX3CR1-M280 was associated with increased risk and worse outcome of human systemic candidiasis. However, the impact of this mutation on human monocyte/macrophage survival is poorly understood. Herein, we hypothesized that CX3CR1-M280 impairs human monocyte survival. We identified WT (CX3CR1-WT/WT), CX3CR1-WT/M280 heterozygous, and CX3CR1-M280/M280 homozygous healthy donors of European descent, and we show that CX3CL1 rescues serum starvation-induced cell death in CX3CR1-WT/WT and CX3CR1-WT/M280 but not in CX3CR1-M280/M280 monocytes. CX3CL1-induced survival of CX3CR1-WT/WT monocytes is mediated via AKT and ERK activation, which are both impaired in CX3CR1-M280/M280 monocytes, associated with decreased blood monocyte counts in CX3CR1-M280/M280 donors at steady state. Instead, CX3CR1-M280/M280 does not affect monocyte CX3CR1 surface expression or innate immune effector functions. Together, we show that homozygocity of the M280 polymorphism in CX3CR1 is a potentially novel population-based genetic factor that influences human monocyte signaling.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/genética , Supervivencia Celular/genética , Monocitos/fisiología , Apoptosis/inmunología , Receptor 1 de Quimiocinas CX3C/metabolismo , Técnicas de Cultivo de Célula , Supervivencia Celular/inmunología , Células Cultivadas , Quimiocina CX3CL1/inmunología , Quimiocina CX3CL1/metabolismo , Medio de Cultivo Libre de Suero , Voluntarios Sanos , Homocigoto , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...