Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(15): 3605-3617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713223

RESUMEN

The analysis of dietary supplements is far less regulated than pharmaceuticals, leading to potential quality issues. Considering their positive effect, many athletes consume supplements containing L-histidine and ß-alanine. A new microfluidic method for the determination of L-histidine and ß-alanine in dietary supplement formulations has been developed. For the first time, capacitively coupled contactless conductivity detection was employed for the microchip electrophoresis of amino acids in real samples. A linear relationship between detector response and concentration was observed in the range of 10-100 µmol L-1 for L-histidine (R2 = 0.9968) and ß-alanine (R2 = 0.9954), while achieved limits of detection (3 × S/N ratio) were 4.2 µmol L-1 and 5.2 µmol L-1, respectively. The accuracy of the method was confirmed using recovery experiments as well as CE-UV-VIS and HPLC-UV-VIS techniques. The developed method allows unambiguous identification of amino acids in native form without chemical derivatization and with the possibility of simultaneous analysis of amino acids with metal cations.


Asunto(s)
Suplementos Dietéticos , Conductividad Eléctrica , Electroforesis por Microchip , Histidina , beta-Alanina , Electroforesis por Microchip/métodos , Suplementos Dietéticos/análisis , beta-Alanina/análisis , beta-Alanina/química , Histidina/análisis , Histidina/química , Límite de Detección , Tecnología Química Verde/métodos , Vidrio/química
2.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38676005

RESUMEN

Two new surfactant sensors were developed by synthesizing Pt-doped acid-activated multi-walled carbon nanotubes (Pt@MWCNTs). Two different ionophores using Pt@MWCNTs, a new plasticizer, and (a) cationic surfactant 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-DHBI (Pt@MWCNT-DHBI ionophore) and (b) anionic surfactant dodecylbenzenesulfonate-DBS (Pt@MWCNT-DBS ionophore) composites were successfully synthesized and characterized. Both surfactant sensors showed a response to anionic surfactants (dodecylsulfate (SDS) and DBS) and cationic surfactants (cetylpyridinium chloride (CPC) and hexadecyltrimethylammonium bromide (CTAB)). The Pt@MWCNT-DBS sensor showed lower sensitivity than expected with the sub-Nernstian response of ≈23 mV/decade of activity for CPC and CTAB and ≈33 mV/decade of activity for SDS and DBS. The Pt@MWCNT-DHBI surfactant sensor had superior response properties, including a Nernstian response to SDS (59.1 mV/decade) and a near-Nernstian response to DBS (57.5 mV/decade), with linear response regions for both anionic surfactants down to ≈2 × 10-6 M. The Pt@MWCNT-DHBI was also useful in critical micellar concentration (CMC) detection. Common anions showed very low interferences with the sensor. The sensor was successfully employed for the potentiometric titration of a technical grade cationic surfactant with good recoveries. The content of cationic surfactants was measured in six samples of complex commercial detergents. The Pt@MWCNT-DHBI surfactant sensor showed good agreement with the ISE surfactant sensor and classical two-phase titration and could be used as an analytical tool in quality control.

3.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834151

RESUMEN

The health supplement industry is one of the fastest growing industries in the world, but there is a lack of suitable analytical methods for the determination of active compounds in health supplements such as peptides. The present work describes an implementation of contactless conductivity detection on microchip technology as a new strategy for the electrophoretic determination of L-carnosine in complex health supplement formulations without pre-concentration and derivatization steps. The best results were obtained in the case of +1.00 kV applied for 20 s for injection and +2.75 kV applied for 260 s for the separation step. Under the selected conditions, a linear detector response of 5 × 10-6 to 5 × 10-5 M was achieved. L-carnosine retention time was 61 s. The excellent reproducibility of both migration time and detector response confirmed the high precision of the method. The applicability of the method was demonstrated by the determination of L-carnosine in three different samples of health supplements. The recoveries ranged from 91 to 105%. Subsequent analysis of the samples by CE-UV-VIS and HPLC-DAD confirmed the accuracy of the obtained results.


Asunto(s)
Carnosina , Electroforesis por Microchip , Electroforesis por Microchip/métodos , Reproducibilidad de los Resultados , Inyecciones , Conductividad Eléctrica , Dispositivos Laboratorio en un Chip
4.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36850724

RESUMEN

The behavior of a new 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate (DODI-TPB) surfactant sensor was studied in single and complex mixtures of technical grade QACs-benzalkonium chloride (BAC), N,N-didecyl-N,N-dimethylammonium chloride (DDAC), and N,N-dioctyl-N,N-dimethylammonium chloride (DOAC) usually used in COVID-19 disinfecting agents formulations. The results obtained with the new DODI-TPB sensor were in good agreement with data measured by a 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DMI-TPB) surfactant sensor, as well as two-phase titration used as a reference method. The quantitative titrations of a two-component mixture of the cationic homologs (a) DDAC and DOAC; and (b) BAC and DOAC showed that the new DODI-TPB surfactant sensor can clearly distinguish two separate mixture components in a single potentiometric titration curve with two characteristic inflexion points. The consumption of SDS (used as a titrant) in the end-point 1 (EP 1) corresponded to the content of DDAC (or BAC), whereas the consumption in the end-point 2 (EP 2) corresponded to the total content of both cationic surfactants in the mixture. DOAC content in both mixtures can be calculated from the difference of the titrant used to achieve EP1 and EP2. The addition of nonionic surfactants resulted in the signal change decrease from 333.2 mV (1:0; no nonionic surfactant added) to 243.0 mV (1:10, w/w). The sensor was successfully tested in ten two-component COVID-19 disinfecting formulations.


Asunto(s)
COVID-19 , Tensoactivos , Humanos , Tetrafenilborato , Compuestos de Benzalconio
5.
Talanta ; 253: 123937, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179557

RESUMEN

Glyphosate is the most widely used herbicide in the world and, in view of its toxicity, there is a quest for easy-to-use, but reliable methods to detect it in water. To address this issue, we realized a simple, rapid, and highly sensitive immunosensor based on gold coated magnetic nanoparticles (MNPs@Au) to detect glyphosate in tap water. Not only the gold shell provided a sensitive optical transduction of the biological signal - through the shift of the local surface plasmon resonance (LSPR) entailed by the nanoparticle aggregation -, but it also allowed us to use an effective photochemical immobilization technique to tether oriented antibodies straight on the nanoparticles surface. While such a feature led to aggregates in which the nanoparticles were at close proximity each other, the magnetic properties of the core offered us an efficient tool to steer the nanoparticles by a rotating magnetic field. As a result, the nanoparticle aggregation in presence of the target could take place at higher rate (enhanced diffusion) with significant improvement in sensitivity. As a matter of fact, the combination of plasmonic and magnetic properties within the same nanoparticles allowed us to realize a colorimetric biosensor with a limit of detection (LOD) of 20 ng∙L-1.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Agua , Oro , Fenómenos Magnéticos
6.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501843

RESUMEN

A low-cost and fast potentiometric surfactant sensor for cationic surfactants, based on the new ion-pair 1,3-dioctadecyl-1H-imidazol-3-ium-tetraphenylborate (DODI-TPB), is presented. The new cationic surfactant DODI-Br was synthesized and characterized by NMR, LC-MS, and elemental analysis, and was used for synthesis of the DODI-TPB ionophore. The DODI-TPB surfactant sensor was obtained by implementation of the ionophore in PVC. The sensor showed excellent response characteristics with near-Nernstian slopes to the cationic surfactants DMIC, CPC, CTAB, and Hyamine 1622. The highest voltage responses were obtained for DMIC and CPC (58.7 mV/decade of activity). DMIC had the lowest detection limit (0.9 × 10-6 M) and the broadest useful linear concentration range (1.8 × 10-6 to 1.0 × 10-4 M). An interference study showed remarkable stability. Potentiometric titration curves for the titration of cationic surfactants (DMIC, CPC, CTAB, and Hyamine 1622), with DDS and TPB used as titrants, showed sigmoidal curves with well-defined inflexion points and a broad signal change. The standard addition method was successfully applied with recovery rates from 98.9 to 101.2 at two concentrations. The amount of cationic surfactant found in disinfectants and antiseptics was in good agreement with the referent two-phase titration method and the surfactant sensor on the market. This new surfactant sensor represents a low-cost alternative to existing methods for cationic surfactant detection.


Asunto(s)
Tensoactivos , Tetrafenilborato , Tensoactivos/química , Concentración de Iones de Hidrógeno , Potenciometría/métodos , Ionóforos , Tetrafenilborato/química
7.
Molecules ; 26(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198483

RESUMEN

A 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair implemented in DHBI-TPB surfactant sensor was used for the potentiometric quantification of anionic surfactants in detergents and commercial household care products. The DHBI-TPB ion-pair was characterized by FTIR spectroscopy and computational analysis which revealed a crucial contribution of the C-H∙∙∙π contacts for the optimal complex formation. The DHBI-TPB sensor potentiometric response showed excellent analytical properties and Nernstian slope for SDS (60.1 mV/decade) with LOD 3.2 × 10-7 M; and DBS (58.4 mV/decade) with LOD 6.1 × 10-7 M was obtained. The sensor possesses exceptional resistance to different organic and inorganic interferences in broad pH (2-10) range. DMIC used as a titrant demonstrated superior analytical performances for potentiometric titrations of SDS, compared to other tested cationic surfactants (DMIC > CTAB > CPC > Hyamine 1622). The combination of DHBI-TPB sensor and DMIC was successfully employed to perform titrations of the highly soluble alkane sulfonate homologues. Nonionic surfactants (increased concentration and number of EO groups) had a negative impact on anionic surfactant titration curves and a signal change. The DHBI-TPB sensor was effectively employed for the determination of technical grade anionic surfactants presenting the recoveries from 99.5 to 101.3%. The sensor was applied on twelve powered samples as well as liquid-gel and handwashing home care detergents containing anionic surfactants. The obtained results showed good agreement compared to the outcomes measured by ISE surfactant sensor and a two-phase titration method. The developed DHBI-TPB surfactant sensor could be used for quality control in industry and has great potential in environmental monitoring.


Asunto(s)
Detergentes/química , Imidazoles/química , Ionóforos/química , Polímeros/química , Potenciometría/métodos , Tensoactivos/análisis , Aniones/análisis , Electrodos , Concentración de Iones de Hidrógeno
8.
Sensors (Basel) ; 21(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069524

RESUMEN

Surfactant liquid-membrane type sensors are usually made of a PVC, ionophore and a plasticizer. Plasticizers soften the PVC. Due to their lipophilicity, they influence the ion exchange across the membrane, ionophore solubility, membrane resistance and, consequently, the analytical signal. We used the DMI-TPB as an ionophore, six different plasticizers [2-nitrophenyl-octyl-ether (P1), bis(2-ethylhexyl) phthalate (P2), bis(2-ethylhexyl) sebacate (P3), 2-nitrophenyl phenyl ether (P4), dibutyl phthalate (P5) and dibutyl sebacate (P6)] and a PVC to produce ionic surfactant sensors. Sensor formulation with P1 showed the best potentiometric response to four usually used cationic surfactant, with the lowest LOD, 7 × 10-7 M; and potentiometric titration curves with well-defined and sharp inflexion points. The sensor with P6 showed the lowest analytical performances. Surfactant sensor with P1 was selected for quantification of cationic surfactant in model solutions and commercial samples of disinfectants and antiseptics. It showed high accuracy and precision in all determinations, with recovery from 98.2 to 99.6, and good agreement with the results obtained with surfactant sensor used as a referent one, and a standard two-phase titration method. RDS values were lower than 0.5% for all determinations.


Asunto(s)
Antiinfecciosos Locales , Desinfectantes , Concentración de Iones de Hidrógeno , Plastificantes , Cloruro de Polivinilo , Potenciometría , Tensoactivos
9.
Molecules ; 26(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806643

RESUMEN

A novel, simple, low-cost, and user-friendly potentiometric surfactant sensor based on the new 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair for the detection of cationic surfactants in personal care products and disinfectants is presented here. The new cationic surfactant DHBI-Br was successfully synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectrometry, liquid chromatography-mass spectrometry (LC-MS) and elemental analysis and was further employed for DHBI-TPB ion-pair preparation. The sensor gave excellent response characteristics for CTAB, CPC and Hyamine with a Nernstian slope (57.1 to 59.1 mV/decade) whereas the lowest limit of detection (LOD) value was measured for CTAB (0.3 × 10-6 M). The sensor exhibited a fast dynamic response to dodecyl sulfate (DDS) and TPB. High sensor performances stayed intact regardless of the employment of inorganic and organic cations and in a broad pH range (2-11). Titration of cationic and etoxylated (EO)-nonionic surfactant (NSs) (in Ba2+) mixtures with TPB revealed the first inflexion point for a cationic surfactant and the second for an EO-nonionic surfactant. The increased concentration of EO-nonionic surfactants and the number of EO groups had a negative influence on titration curves and signal change. The sensor was successfully applied for the quantification of technical-grade cationic surfactants and in 12 personal care products and disinfectants. The results showed good agreement with the measurements obtained by a commercial surfactant sensor and by a two-phase titration. A good recovery for the standard addition method (98-102%) was observed.


Asunto(s)
Técnicas Biosensibles/métodos , Cationes/química , Cosméticos/análisis , Desinfectantes/análisis , Imidazoles/química , Potenciometría/métodos , Tensoactivos/química , Concentración de Iones de Hidrógeno
10.
Crit Rev Anal Chem ; 51(2): 115-137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31690085

RESUMEN

Anionic surfactants are important components of many products used in everyday life in all households. They are also applied in various industrial fields at a very large scale. Since they have a negative influence on the environment, it is an imperative to monitor their concentration in aquatic ecosystems. Therefore, it is of great importance to develop new methods for the determination of a wide spectra of anionic surfactants in complex environmental samples in a short time. A comprehensive review of potentiometric sensors for the determination of anionic surfactants in the last 50 years is given with special concern to papers published since 2000, but noting some earlier published important papers. The latest development in use of new ionophores, polymer formulations, and nanomaterials is presented. Additionally, the application of new potentiometric sensors in batch mode or in miniaturized microfluidic methods is discussed.


Asunto(s)
Potenciometría/métodos , Tensoactivos/análisis , Aniones/química , Electrodos , Ionóforos/química , Nanoestructuras/química , Polímeros/química , Potenciometría/instrumentación , Transistores Electrónicos
11.
Food Technol Biotechnol ; 58(1): 5-11, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32684782

RESUMEN

The botanical origin of starch is of importance in industrial applications and food processing because it may influence the properties of the final product. Current microscopic methods are time-consuming. Starch consists of an origin-dependent amylose/amylopectin ratio. Triiodide ions bind characteristically to the amylose and amylopectin depending on the botanical origin of the starch. The absorbance of the starch-triiodide complex was measured for: wheat, potato, corn, rye, barley, rice, tapioca and unknown origin starch; and within the different cultivars. Each starch sample had specific parameters: starch-triiodide complex peak wavelength maximum (λ max/nm), maximum absorbance change at λ max (ΔA) and λ max shift towards the unknown origin starch sample values. The visible absorption spectra (500-800 nm) for each starch sample were used as a unique fingerprint, and then elaborated by cluster analysis. The cluster analysis managed to distinguish data of two clusters, a cereal type cluster and a potato/tapioca/rice starch cluster. The cereal subclusters extensively distinguished wheat/barley/rye starches from corn starches. Data for cultivars were mostly in good agreement within the same subclaster. The proposed method that combines cluster analysis and visible absorbance data for starch-triiodide complex was able to distinguish starch of different botanical origins and cultivars within the same species. This method is simpler and more convenient than standard time-consuming methods.

12.
Anal Bioanal Chem ; 410(18): 4359-4369, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29707755

RESUMEN

Microchip electrophoresis (ME) was applied for the separation of two physiologically important imidazole dipeptides-carnosine and anserine. The capacitively coupled contactless conductivity detector (C4D) was employed for quantification of both dipeptides after separation in a new home-built ME unit. The separation parameters were optimized as follows to enable quantitative, baseline separation of both dipeptides: injection time 16 s, injection voltage 900 V/cm, and separation voltage 377.1 V/cm. The C4D detector responded linearly to both imidazole dipeptides in the range 0-20 mg L-1. The known addition methodology was applied to test the accuracy of the measurement of imidazole dipeptides in a complex sample. The recoveries for measurement of carnosine in the mixture ranged from 96.1 to 105.0%, whereas those for anserine amounted to 96.6 to 102.0%. This method was also applied to real biological samples. The results exhibited a satisfactory agreement with a standard HPLC method. The proposed ME method represents a cheap, fast, and simple alternative to the existing, more complicated and expensive HPLC methods. This method does not demand either the optical detectors nor tedious derivatization of sample, which are unavoidable in HPLC methods. The method was succesfuly applied for animal species determination in unknown meat samples using the carnosine/anserine ratio, and subsequently, it could be used in a food fraud prevention process. Graphical abstract Microchip electrophoresis portable device with a C4D detector for determination of imidazole dipeptides in model samples and real meat samples from different animal species.


Asunto(s)
Anserina/análisis , Carnosina/análisis , Electroforesis por Microchip/métodos , Carne/análisis , Animales , Bovinos , Pollos , Cromatografía Líquida de Alta Presión/métodos , Análisis Costo-Beneficio , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Electroforesis por Microchip/economía , Caballos , Imidazoles/química , Límite de Detección , Conejos , Reproducibilidad de los Resultados , Especificidad de la Especie
13.
Talanta ; 174: 52-58, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738617

RESUMEN

The development of a portable testing device for detecting Human Salivary α-Amylase (HSA) is very timely since such an enzyme is a valuable biomarker for diagnosing many diseases and monitoring the human stress. We show that an easy-to-use and robust device like the Quartz-Crystal Microbalance (QCM) can be a suitable platform for HSA sensing with a limit of detection of 1µg/mL (77 U/L). The functionalization of the gold surface is realized by the Photochemical Immobilization Technique (PIT), a powerful and simple method based on an appropriate UV-activation of antibodies. The resulting QCM-based immunosensor allows one to detect HSA in saliva by simple dilution and one-step protocol, whereas the measurement of HSA content in body fluids like urine and serum could be carried out by introducing an additional step consisting of analyte ballasting through the formation of sandwich complexes, which pushes the limit of detection to less than 10 U/L. The validation of the one-step protocol with a standard laboratory method like Phadebas test demonstrates the reliability of the proposed immunosensors, which can be applied to the amylase concentration in body fluids like blood serum and urine for which the physiological level is above 20 U/L.


Asunto(s)
Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Saliva/enzimología , alfa-Amilasas Salivales/análisis , Humanos , Tecnicas de Microbalanza del Cristal de Cuarzo
14.
Food Chem ; 221: 1658-1665, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979143

RESUMEN

A home-made microchip electrophoresis (MCE) device was used to quantitate two biologically important histidine dipeptides, carnosine and anserine, using capacitively coupled contactless conductivity detection (C4D), at pH 2.7. The C4D detector exhibited a linear response to both carnosine and anserine in the range of 0-200µM for the individual dipeptides and in the range of 0-100µM for each dipeptide when both were present as a mixture. The limit of detections (LOD) for the dipeptides in the mixture were 0.10µM for carnosine and 0.16µM for anserine. Standard addition was used to detemine the accuracy of the method. For carnosine and anserine the recoveries were in the range of 96.7±4.9-106.0±7.5% and 95.3±4.5-105.0±5.1% in thigh muscle and 97.5±5.1-105.0±7.5% and 95.3±5.4-97.3±5.6% in breast muscle, respectively.


Asunto(s)
Anserina/análisis , Carnosina/análisis , Electroforesis Capilar/métodos , Músculo Esquelético/química , Animales , Pollos
15.
J Food Sci Technol ; 51(10): 2616-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25328203

RESUMEN

The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

16.
Food Chem ; 138(1): 9-12, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23265448

RESUMEN

Here, we describe the development of a platinum redox sensor for the direct potentiometric quantification of starch in solution. The sensor measures the decrease in free triiodide ion after it complexes with starch to form a starch-triiodide complex. This decrease was, therefore, correlated with starch concentration, and the composition and stability of the potassium triiodide solution were optimised. The starch-triiodide complex was characterized potentiometrically at variable starch and triiodide concentrations. We also propose a response mechanism for the platinum redox sensor towards starch and an appropriate theoretical model. The optimised method exhibited satisfactory accuracy and precision and was in good agreement with a standard spectrophotometric method. The sensor was tested over a range of 0.4-9 mg starch, with recoveries ranging from 97.8% to 103.4% and a detection limit of 0.01 mg starch.


Asunto(s)
Técnicas Biosensibles/métodos , Potenciometría/métodos , Almidón/análisis , Técnicas Biosensibles/instrumentación , Límite de Detección , Oxidación-Reducción , Platino (Metal)/química
17.
Food Chem ; 135(2): 827-31, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22868165

RESUMEN

A novel method for the determination of diastase activity is reported. The method is based on a direct potentiometric measurement of triiodide ion that is released when a starch-triiodide complex is hydrolysed by honey diastase. The increase of free triiodide ion concentration in a sample is found to be directly proportional to the diastase activity of the sample. A response mechanism of the platinum redox electrode is proposed, allowing a calculation of the diastase activity factor (F). The sensor and analyte parameters, including F, were obtained by least squares fitting of potentiometric data using the optimisation function of the Solver add-in of Microsoft Excel. The values of F obtained by the new direct potentiometric method were compared with those obtained using the standard Phadebas method (DN values), and the two values were found to agree within experimental error. Finally, the diastase activity of nine varieties of honey was determined using the novel method developed here.


Asunto(s)
Amilasas/análisis , Miel/análisis , Potenciometría/métodos , Pruebas de Enzimas
18.
Talanta ; 93: 135-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22483889

RESUMEN

A new rapid method for the determination of honey diastase activity using direct potentiometric principles has been proposed. A platinum redox sensor has been used to quantify the amount of free triiodide released from a starch triiodide complex after starch hydrolysis by honey diastase. The method was tested on honey samples with varying diastase activities. The first 5 min of data for each sample were used for linear regression analysis in order to calculate diastase activity. The new method was compared with classical Schade and commercial Phadebas procedures. The results showed good correlations with both methods and offered a simple method for unit conversion to DN units for diastase activity, making the method suitable for routine analysis.


Asunto(s)
Amilasas/metabolismo , Pruebas de Enzimas/métodos , Miel , Pruebas de Enzimas/economía , Modelos Lineales , Potenciometría , Factores de Tiempo
19.
Talanta ; 83(5): 1606-12, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21238759

RESUMEN

A platinum redox sensor for the direct potentiometric determination of α-amylase concentration has been described. The sensor measured the amount of triiodide released from a starch-triiodide complex, which was correlated with the α-amylase activity after biocatalytic starch degradation. The composition and stability of the potassium triiodide solution was optimized. The starch-triiodide complex was characterized potentiometrically at variable starch and triiodide concentrations. The response mechanism of the platinum redox sensor towards α-amylase was proposed and the appropriate theoretical model was elaborated. The results obtained using the redox sensor exhibited satisfactory accuracy and precision and good agreement with a standard spectrophotometric method and high-sensitive fully automated descret analyser method. The sensor was tested on pure α-amylase (EC 3.2.1.1, Fluka, Switzerland), industrial granulated α-amylase Duramyl 120 T and an industrial cogranulate of protease and α-amylase Everlase/Duramyl 8.0 T/60 T. The detection limit was found to be 1.944 mU for α-amylase in the range of 0-0.54 U (0-15 µg), 0.030 mKNU for Duramyl 120 T in the range of 0-9.6 mKNU (0-80 µg) and 0.032 mKNU for Everlase/Duramyl 8.0 T/60 T in the range of 0-9.24 mKNU (0-140 µg).


Asunto(s)
alfa-Amilasas/química , Límite de Detección , Oxidación-Reducción , Platino (Metal)/química , Potenciometría , alfa-Amilasas/análisis
20.
Talanta ; 76(2): 259-64, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18585274

RESUMEN

A new sensitive potentiometric surfactant sensor was prepared based on a highly lipophilic 1,3-didecyl-2-methyl-imidazolium cation and a tetraphenylborate antagonist ion. This sensor was used as a sensing material and incorporated into the plasticized PVC-membrane. The sensor responded fast and showed a Nernstian response for investigated surfactant cations: cetylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB) and Hyamine with slope 59.8, 58.6 and 56.8 mV/decade, respectively. The sensor served as an end-point detector in ion-pair surfactant potentiometric titrations using sodium tetraphenylborate as titrant. Several technical grade cationic surfactants and a few commercial disinfectant products were also titrated, and the results were compared with those obtained from a two-phase standard titration method. The sensor showed satisfactory analytical performances within a pH range of 2-11, and exhibited excellent selectivity performance for CPC compared to all of the organic and inorganic cations investigated. The influence of the nonionic surfactants on the shape of titration curves was negligible if the mass ratio of ethoxylated nonionic surfactants and cationic surfactants (EONS:CS) was not greater than 5.


Asunto(s)
Desinfectantes/análisis , Potenciometría/métodos , Tensoactivos/análisis , Cationes , Concentración de Iones de Hidrógeno , Potenciometría/instrumentación , Potenciometría/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...