Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Lab Invest ; : 102073, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718982

RESUMEN

The glycans form a unique complex on the surface of cancer cells and play a pivotal role in tumor progression, impacting proliferation, invasion, and metastasis. TRA-1-60 is a glycan that was identified as a critical marker for the establishment of fully reprogrammed inducible pluripotent stem (iPS) cells. Its expression has been detected in multiple cancer tissues, including embryonal carcinoma, prostate cancer, and pancreatic cancer, but the biological and pathological characterization of TRA-1-60-expressing tumor cells still remains unclear within various types of malignancies. Here, we report the biological characteristics of TRA-1-60-expressing gastric cancer cells, especially those with its cell surface expression, and the therapeutic significance of targeting TRA-1-60. The cells with cell membrane expression of TRA-1-60 were mainly observed in the invasive area of patient gastric cancer tissues and correlated with advanced stages of the disease based on histopathological and clinicopathological analyses. In vitro analysis using a scirrhous gastric adenocarcinoma line, HSC-58, which highly expresses TRA-1-60 on its plasma membrane, revealed increased stress-resistant mechanisms, supported by the upregulation of glutathione synthetase (GSS) and NCF-1 (p47phox) via lipid-ROS regulatory pathways, as detected by RNA-seq analysis followed by oxidative stress gene-profiling. Our in vivo therapeutic study using the TRA-1-60-targeting antibody-drug conjugate (ADC), namely Bstrongomab conjugated Monomethyl auristatin E (MMAE), showed robust efficacy in a mouse model of peritoneal carcinomatosis induced by intraperitoneal xenograft of HSC-58, by markedly reducing massive tumor ascites. Thus, targeting the specific cell surface glycan, TRA-1-60, shows significant therapeutic impact in advanced-stage gastric cancers. (243 words).

2.
Front Oncol ; 14: 1371342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595825

RESUMEN

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-ß1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain. Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography. Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion. Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.

3.
Br J Cancer ; 130(9): 1493-1504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38448751

RESUMEN

BACKGROUND: Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated. METHODS: PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1. RESULTS: High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2 A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1-TOP2A interaction. CONCLUSION: Targeting the PRRX1-TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Transición Epitelial-Mesenquimal , Proteínas de Homeodominio , Proteínas de Unión a Poli-ADP-Ribosa , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Pronóstico , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones , Animales , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/patología , Neoplasias de la Vaina del Nervio/metabolismo , Transducción de Señal
4.
Nihon Yakurigaku Zasshi ; 159(2): 107-111, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38432918

RESUMEN

Acute phase proteins such as CRP, amyloid protein A, and α1-antitrypsin are produced in the liver and their plasma levels are increased during the acute inflammatory response. In contrast, there are plasma proteins whose dynamics are opposite to acute phase proteins. This group includes histidine-rich glycoprotein (HRG), inter-α-inhibitor proteins, albumin, and transthyretin. HRG binds to a variety of factors and regulates the fundamental processes; the blood coagulation, the clearance of apoptotic cells, and tumor growth. In the present review, we focus on the anti-septic effects of HRG in mice model, the actions of HRG on human blood cells/vascular endothelial cells, and the identification of a novel receptor CLEC1A for HRG, based on our recent findings. HRG appears to maintain the quiescence of neutrophils; a round shape, the low levels of spontaneous release of ROS, the ease passage through artificial microcapillaries, and prevention of adhesion to vascular endothelial cells. HRG also inhibited activation of vascular endothelial cells; the suppression of adhesion molecules and the inhibition of HMGB1 mobilization and cytokine secretion. It was shown that plasma HRG level was an excellent biomarker of septic patients in ICU for the evaluation of severity and prognosis. So far little attention has been paid to HRG in terms of a functional role in sepsis and ARDS, however, it is strongly suggested that HRG may be an important plasma factor that prevents a progress in the septic cascade and maintains the homeostasis of blood cells and vascular endothelial cells.


Asunto(s)
Células Endoteliales , Proteínas , Sepsis , Animales , Humanos , Ratones , Proteínas de Fase Aguda , Proteínas Sanguíneas , Homeostasis
6.
J Mol Med (Berl) ; 101(12): 1603-1614, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37831111

RESUMEN

Cancer-associated fibroblasts (CAFs) are important components in the tumor microenvironment, and we sought to identify effective therapeutic targets in CAFs for non-small cell lung cancer (NSCLC). In this study, we established fibroblast cell lines from the cancerous and non-cancerous parts of surgical lung specimens from patients with NSCLC and evaluated the differences in behaviors towards NSCLC cells. RNA sequencing analysis was performed to investigate the differentially expressed genes between normal fibroblasts (NFs) and CAFs, and we identified that the expression of periostin (POSTN), which is known to be overexpressed in various solid tumors and promote cancer progression, was significantly higher in CAFs than in NFs. POSTN increased cell proliferation via NSCLC cells' ERK pathway activation and induced epithelial-mesenchymal transition (EMT), which improved migration in vitro. In addition, POSTN knockdown in CAFs suppressed these effects, and in vivo experiments demonstrated that the POSTN knockdown improved the sensitivity of EGFR-mutant NSCLC cells for osimertinib treatment. Collectively, our results showed that CAF-derived POSTN is involved in tumor growth, migration, EMT induction, and drug resistance in NSCLC. Targeting CAF-secreted POSTN could be a potential therapeutic strategy for NSCLC. KEY MESSAGES: • POSTN is significantly upregulated in CAFs compared to normal fibroblasts in NCSLC. • POSTN increases cell proliferation via activation of the NSCLC cells' ERK pathway. • POSTN induces EMT in NSCLC cells and improves the migration ability. • POSTN knockdown improves the sensitivity for osimertinib in EGFR-mutant NSCLC cells.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Medicamentos , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microambiente Tumoral/genética
7.
J Biochem ; 174(6): 533-548, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37725528

RESUMEN

Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.


Asunto(s)
Enfermedad de Parkinson , Rotenona , Humanos , Animales , Ratones , Rotenona/farmacología , Rotenona/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Muerte Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
8.
Cell Signal ; 108: 110717, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37187216

RESUMEN

Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death.


Asunto(s)
Axones , NAD , NAD/metabolismo , Vincristina/metabolismo , Axones/metabolismo , Neuronas/metabolismo , Muerte Celular , Proteínas del Dominio Armadillo/metabolismo
9.
Front Oncol ; 13: 1142907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091157

RESUMEN

Background: LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer. Methods: We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cells' activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach. Results: Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin ß-1, resulting in the locking of integrin ß-1 on the cell surface. These events enhance the promotion of cancer cell outgrowth. Conclusions: LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin ß-1 on the cell surface.

10.
J Mol Med (Berl) ; 101(4): 431-447, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869893

RESUMEN

The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3-namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects. KEY MESSAGES: • REIC/Dkk-3 protein effectively suppresses breast cancer progression through an acceleration of PD-L1 degradation. • PD-L1 stability on the cancer cell membrane is kept high by binding with mainly CMTM6. • Competitive binding of REIC/Dkk-3 protein with CMTM6 liberates PD-L1, leading to PD-L1 degradation.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas Adaptadoras Transductoras de Señales/metabolismo
11.
Front Oncol ; 13: 1142886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910659

RESUMEN

Background: EMT has been proposed to be a crucial early event in cancer metastasis. EMT is rigidly regulated by the action of several EMT-core transcription factors, particularly ZEB1. We previously revealed an unusual role of ZEB1 in the S100A8/A9-mediated metastasis in breast cancer cells that expressed ZEB1 at a significant level and showed that the ZEB1 was activated on the MCAM-downstream pathway upon S100A8/A9 binding. ZEB1 is well known to require Zn2+ for its activation based on the presence of several Zn-finger motifs in the transcription factor. However, how Zn2+-binding works on the pleiotropic role of ZEB1 through cancer progression has not been fully elucidated. Methods: We established the engineered cells, MDA-MB-231 MutZEB1 (MDA-MutZEB1), that stably express MutZEB1 (ΔZn). The cells were then evaluated in vitro for their invasion activities. Finally, an RNA-Seq analysis was performed to compare the gene alteration profiles of the established cells comprehensively. Results: MDA-MutZEB1 showed a significant loss of the EMT, ultimately stalling the invasion. Inclusive analysis of the transcription changes after the expression of MutZEB1 (ΔZn) in MDA-MB-231 cells revealed the significant downregulation of LOX family genes, which are known to play a critical role in cancer metastasis. We found that LOXL1 and LOXL4 remarkably enhanced cancer invasiveness among the LOX family genes with altered expression. Conclusions: These findings indicate that ZEB1 potentiates Zn2+-mediated transcription of plural EMT-relevant factors, including LOXL1 and LOXL4, whose upregulation plays a critical role in the invasive dissemination of breast cancer cells.

12.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902429

RESUMEN

The downregulation of SPRED2, a negative regulator of the ERK1/2 pathway, was previously detected in human cancers; however, the biological consequence remains unknown. Here, we investigated the effects of SPRED2 loss on hepatocellular carcinoma (HCC) cell function. Human HCC cell lines, expressing various levels of SPRED2 and SPRED2 knockdown, increased ERK1/2 activation. SPRED2-knockout (KO)-HepG2 cells displayed an elongated spindle shape with increased cell migration/invasion and cadherin switching, with features of epithelial-mesenchymal transition (EMT). SPRED2-KO cells demonstrated a higher ability to form spheres and colonies, expressed higher levels of stemness markers and were more resistant to cisplatin. Interestingly, SPRED2-KO cells also expressed higher levels of the stem cell surface markers CD44 and CD90. When CD44+CD90+ and CD44-CD90- populations from WT cells were analyzed, a lower level of SPRED2 and higher levels of stem cell markers were detected in CD44+CD90+ cells. Further, endogenous SPRED2 expression decreased when WT cells were cultured in 3D, but was restored in 2D culture. Finally, the levels of SPRED2 in clinical HCC tissues were significantly lower than those in adjacent non-HCC tissues and were negatively associated with progression-free survival. Thus, the downregulation of SPRED2 in HCC promotes EMT and stemness through the activation of the ERK1/2 pathway, and leads to more malignant phenotypes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Células Hep G2 , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Represoras/genética
13.
J Biochem ; 173(5): 393-411, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36779417

RESUMEN

HNF4α regulates various genes to maintain liver function. There have been reports linking HNF4α expression to the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis. In this study, liver-specific Hnf4a-deficient mice (Hnf4aΔHep mice) developed hepatosteatosis and liver fibrosis, and they were found to have difficulty utilizing glucose. In Hnf4aΔHep mice, the expression of fatty acid oxidation-related genes, which are PPARα target genes, was increased in contrast to the decreased expression of PPARα, suggesting that Hnf4aΔHep mice take up more lipids in the liver instead of glucose. Furthermore, Hnf4aΔHep/Ppara-/- mice, which are simultaneously deficient in HNF4α and PPARα, showed improved hepatosteatosis and fibrosis. Increased C18:1 and C18:1/C18:0 ratio was observed in the livers of Hnf4aΔHep mice, and the transactivation of PPARα target gene was induced by C18:1. When the C18:1/C18:0 ratio was close to that of Hnf4aΔHep mouse liver, a significant increase in transactivation was observed. In addition, the expression of Pgc1a, a coactivator of PPARs, was increased, suggesting that elevated C18:1 and Pgc1a expression could contribute to PPARα activation in Hnf4aΔHep mice. These insights may contribute to the development of new diagnostic and therapeutic approaches for NAFLD by focusing on the HNF4α and PPARα signaling cascade.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/genética , PPAR alfa/metabolismo
14.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354584

RESUMEN

(1) Background: Lung ischemia-reperfusion (IR) injury increases the mortality and morbidity of patients undergoing lung transplantation. The objective of this study was to identify the key initiator of lung IR injury and to evaluate pharmacological therapeutic approaches using a functional inhibitor against the identified molecule. (2) Methods: Using a mouse hilar clamp model, the combination of RNA sequencing and histological investigations revealed that neutrophil-derived S100A8/A9 plays a central role in inflammatory reactions during lung IR injury. Mice were assigned to sham and IR groups with or without the injection of anti-S100A8/A9 neutralizing monoclonal antibody (mAb). (3) Results: Anti-S100A8/A9 mAb treatment significantly attenuated plasma S100A8/A9 levels compared with control IgG. As evaluated by oxygenation capacity and neutrophil infiltration, the antibody treatment dramatically ameliorated the IR injury. The gene expression levels of cytokines and chemokines induced by IR injury were significantly reduced by the neutralizing antibody. Furthermore, the antibody treatment significantly reduced TUNEL-positive cells, indicating the presence of apoptotic cells. (4) Conclusions: We identified S100A8/A9 as a novel therapeutic target against lung IR injury.

15.
Biochem Biophys Res Commun ; 634: 83-91, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36240653

RESUMEN

Bladder cancer is an often widely disseminated and deadly cancer. To block the malignant outgrowth of bladder cancer, we must elucidate the molecular-level characteristics of not only bladder cancer cells but also their surrounding milieu. As part of this effort, we have long been studying extracellular S100A8/A9, which is elevated by the inflammation associated with certain cancers. Extracellularly enriched S100A8/A9 can hasten a shift to metastatic transition in multiple types of cancer cells. Intriguingly, high-level S100A8/A9 has been detected in the urine of bladder-cancer patients, and the level increases with the stage of malignancy. Nonetheless, S100A8/A9 has been investigated mainly as a potential biomarker of bladder cancers, and there have been no investigations of its role in bladder-cancer growth and metastasis. We herein report that extracellular S100A8/A9 induces upregulation of growth, migration and invasion in bladder cancer cells through its binding with cell-surface Toll-like receptor 4 (TLR4). Our molecular analysis revealed the TLR4 downstream signal that accelerates such cancer cell events. Tumor progression locus 2 (TPL2) was a key factor facilitating the aggressiveness of cancer cells. Upon binding of S100A8/A9 with TLR4, TPL2 activation was enhanced by an action with a TLR4 adaptor molecule, TIR domain-containing adaptor protein (TIRAP), which in turn led to activation of the mitogen-activated protein kinase (MAPK) cascade of TPL2. Finally, we showed that sustained inhibition of TLR4 in cancer cells effectively dampened cancer survival in vivo. Collectively, our results indicate that the S100A8/A9-TLR4-TPL2 axis influences the growth, survival, and invasive motility of bladder cancer cells.


Asunto(s)
Receptor Toll-Like 4 , Neoplasias de la Vejiga Urinaria , Humanos , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1 , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/metabolismo
16.
Biomed Pharmacother ; 155: 113733, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271542

RESUMEN

Pancreatic cancer is recalcitrant to treatment as it is highly metastatic and rapidly progressive. While observing the behavior of human pancreatic BxPC-3 cells using an optical assay device called TAXIScan, we found that several synthetic pyrazole and pyrimidine derivatives inhibited cell migration. One such compound, 14-100, inhibited metastasis of fluorescence-labeled BxPC-3 cells, which were transplanted into the pancreas of nude mice as a subcutaneously grown cancer fragment. Surprisingly, despite its low cytotoxicity, the compound also showed an inhibitory effect on cancer cell proliferation in vivo, suggesting that the compound alters cancer cell characteristics needed to grow in situ. Single-cell RNA-sequencing revealed changes in gene expression associated with metastasis, angiogenesis, inflammation, and epithelial-mesenchymal transition. These data suggest that the compound 14-100 could be a good drug candidate against pancreatic cancer.


Asunto(s)
Quimiotaxis , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Ratones Desnudos , Línea Celular Tumoral , Movimiento Celular , Neoplasias Pancreáticas/patología , Páncreas/patología , Transformación Celular Neoplásica , Pirazoles/farmacología , Pirazoles/uso terapéutico , ARN , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Neoplasias Pancreáticas
17.
Biochem Biophys Res Commun ; 629: 86-94, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113182

RESUMEN

Although bronchiolitis obliterans syndrome (BOS) is a major cause of death after lung transplantation, an effective drug therapy for BOS has not yet developed. Here, we assessed the effectiveness of a neutralizing anti-S100 calcium binding protein (S100) A8/A9 antibody against BOS. A murine model of heterotopic tracheal transplantation was used. Mice were intraperitoneally administered control IgG or the S100A8/A9 antibody on day 0 and twice per week until they were sacrificed. Tissue sections were used to evaluate the obstruction ratio, epithelium-preservation ratio, α-smooth muscle actin (SMA)-positive myofibroblast infiltration, and luminal cell death. Quantitative reverse transcriptase-polymerase chain reaction analysis was performed to analyze the mRNA-expression levels of collagen, inflammatory cytokines, and chemokines on days 7, 14, and 21. The anti-S100A8/A9 antibody significantly improved the obstruction ratio and epithelium-preservation ratio, with less α-SMA-positive myofibroblast infiltration compared to the control group. Antibody treatment reduced the type-III collagen: type-I collagen gene-expression ratio. The antibody also significantly suppressed the number of dead cells in the graft lumen. The expression levels of tumor growth factor ß1 and C-C motif chemokine 2 on day 21, but not those of interleukin-1ß, interleukin-6, and tumor necrosis factor α, were significantly suppressed by S100A8/A9 antibody treatment. These findings suggest that S100A8/A9 may be a potential therapeutic target for BOS after lung transplantation.


Asunto(s)
Obstrucción de las Vías Aéreas , Interleucina-6 , Actinas/metabolismo , Animales , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulina G/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , ARN Mensajero , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas S100/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Breast Cancer Res ; 24(1): 60, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096830

RESUMEN

BACKGROUND: Patients with triple-negative breast cancer (TNBC) often have poorer prognosis than those with other subtypes because of its aggressive behaviors. Cancer cells are heterogeneous, and only a few highly metastatic subclones metastasize. Although the majority of subclones may not metastasize, they could contribute by releasing factors that increase the capacity of highly metastatic cells and/or provide a favorable tumor microenvironment (TME). Here, we analyzed the interclonal communication in TNBC which leads to efficient cancer progression, particularly lung metastasis, using the polyclonal murine 4T1 BC model. METHODS: We isolated two 4T1 subclones, LM.4T1 and HM.4T1 cells with a low and a high metastatic potential, respectively, and examined the effects of LM.4T1 cells on the behaviors of HM.4T1 cells using the cell scratch assay, sphere-forming assay, sphere invasion assay, RT-qPCR, and western blotting in vitro. We also examined the contribution of LM.4T1 cells to the lung metastasis of HM.4T1 cells and TME in vivo. To identify a critical factor which may be responsible for the effects by LM.4T1 cells, we analyzed the data obtained from the GEO database. RESULTS: Co-injection of LM.4T1 cells significantly augmented lung metastases by HM.4T1 cells. LM.4T1-derived exosomes promoted the migration and invasion of HM.4T1 cells in vitro, and blocking the secretion of exosome abrogated their effects on HM.4T1 cells. Analyses of data obtained from the GEO database suggested that Wnt7a might be a critical factor responsible for the enhancing effects. In fact, a higher level of Wnt7a was detected in LM.4T1 cells, especially in exosomes, than in HM.4T1 cells, and deletion of Wnt7a in LM.4T1 cells significantly decreased the lung metastasis of HM.4T1 cells. Further, treatment with Wnt7a increased the spheroid formation by HM.4T1 cells via activation of the PI3K/Akt/mTOR signaling pathway. Finally, infiltration of αSMA-positive fibroblasts and angiogenesis was more prominent in tumors of LM.4T1 cells and deletion of Wnt7a in LM.4T1 cells markedly reduced angiogenesis. CONCLUSIONS: We demonstrated, for the first time, that a low metastatic subclone can enhance lung metastasis of highly metastatic subclone via exosomal Wnt7a and propose Wnt7a as a molecular target to treat TNBC patients.


Asunto(s)
Neoplasias Pulmonares , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas , Proteínas Wnt/metabolismo , Animales , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Neovascularización Patológica , Fosfatidilinositol 3-Quinasas , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral
19.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142212

RESUMEN

The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pulmonares , Melanoma Experimental , Proteínas/metabolismo , Animales , Calgranulina A/sangre , Calgranulina A/genética , Calgranulina B/sangre , Factores Quimiotácticos , Ligandos , Neoplasias Pulmonares/metabolismo , Ratones
20.
Genes (Basel) ; 13(2)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35205329

RESUMEN

The role of Dickkopf-3 (Dkk3)/REIC (The Reduced Expression in Immortalized Cells), a Wnt-signaling inhibitor, in male reproductive physiology remains unknown thus far. To explore the functional details of Dkk3/REIC in the male reproductive process, we studied the Dkk3/REIC knock-out (KO) mouse model. By examining testicular sections and investigating the sperm characteristics (count, vitality and motility) and ultrastructure, we compared the reproductive features between Dkk3/REIC-KO and wild-type (WT) male mice. To further explore the underlying molecular mechanism, we performed RNA sequencing (RNA-seq) analysis of testicular tissues. Our results showed that spermiation failure existed in seminiferous tubules of Dkk3/REIC-KO mice, and sperm from Dkk3/REIC-KO mice exhibited inferior motility (44.09 ± 8.12% vs. 23.26 ± 10.02%, p < 0.01). The Ultrastructure examination revealed defects in the sperm fibrous sheath of KO mice. Although the average count of Dkk3/REIC-KO epididymal sperm was less than that of the wild-types (9.30 ± 0.69 vs. 8.27 ± 0.87, ×106), neither the gap (p > 0.05) nor the difference in the sperm vitality rate (72.83 ± 1.55% vs. 72.50 ± 0.71%, p > 0.05) were statistically significant. The RNA-seq and GO (Gene Oncology) enrichment results indicated that the differential genes were significantly enriched in the GO terms of cytoskeleton function, cAMP signaling and calcium ion binding. Collectively, our research demonstrates that Dkk3/REIC is involved in the process of spermiation, fibrous sheath integrity maintenance and sperm motility of mice.


Asunto(s)
Motilidad Espermática , Espermatozoides , Animales , Masculino , Ratones , Ratones Noqueados , Motilidad Espermática/genética , Testículo , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA