Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(21): 13551-13559, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38757371

RESUMEN

π-Conjugated molecules are viewed as fundamental components in forthcoming molecular nanoelectronics in which semiconducting functional units are linked to each other via metallic molecular wires. However, it is still challenging to construct such block cooligomers on the surface. Here, we present a synthesis of [18]-polyene-linked Zn-porphyrin cooligomers via a two-step reaction of the alkyl groups on Cu(111) and Cu(110). Nonyl groups (-C9H19) substituted at the 5,15-meso positions of Zn-porphyrin were first transformed to alkenyl groups (-C9H10) by dehydrogenation. Subsequently, homocoupling of the terminal -CH2 groups resulted in the formation of extended [18]-polyene-linked porphyrin cooligomers. The structures of the products at each reaction step were investigated by bond-resolved scanning tunneling microscopy at low temperatures. A combination of angle-resolved photoemission spectroscopy and density functional theory calculations revealed the metallic property of the all trans [18]-polyene linker on Cu(110). This finding may provide an approach to fabricate complex nanocarbon structures on the surface.

2.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065145

RESUMEN

The photoelectron momentum microscope (PMM) in operation at BL6U, an undulator-based soft x-ray beamline at the UVSOR Synchrotron Facility, offers a new approach for µm-scale momentum-resolved photoelectron spectroscopy (MRPES). A key feature of the PMM is that it can very effectively reduce radiation-induced damage by directly projecting a single photoelectron constant energy contour in reciprocal space with a radius of a few Å-1 or real space with a radius of a few 100 µm onto a two-dimensional detector. This approach was applied to three-dimensional valence band structure E(k) and E(r) measurements ("stereography") as functions of photon energy (hν), its polarization (e), detection position (r), and temperature (T). In this study, we described some examples of possible measurement techniques using a soft x-ray PMM. We successfully applied this stereography technique to µm-scale MRPES to selectively visualize the single-domain band structure of twinned face-centered-cubic Ir thin films grown on Al2O3(0001) substrates. The photon energy dependence of the photoelectron intensity on the Au(111) surface state was measured in detail within the bulk Fermi surface. By changing the temperature of 1T-TaS2, we clarified the variations in the valence band dispersion associated with chiral charge-density-wave phase transitions. Finally, PMMs for valence band stereography with various electron analyzers were compared, and the advantages of each were discussed.

3.
Nano Lett ; 23(16): 7675-7682, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578323

RESUMEN

The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.

4.
Low Urin Tract Symptoms ; 14(4): 289-300, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35150075

RESUMEN

OBJECTIVES: Muscarinic M3 (M3 ) receptors mediate cholinergic smooth muscle contraction of the bladder. Current drugs targeting bladder M3 receptors for micturition disorders have a risk of cholinergic side effects due to excessive receptor activation and insufficient selectivity. We investigated the effect of ASP8302, a novel positive allosteric modulator (PAM) of M3 receptors, on bladder function in rats. METHODS: Modulation of carbachol-induced increases in intracellular Ca2+ was assessed in cells expressing rat muscarinic receptors. Potentiation of bladder contractions was evaluated using isolated rat bladder strips and by measuring intravesical pressure in anesthetized rats. Conscious cystometry was performed to investigate the effects on residual urine volume and voiding efficiency in rat voiding dysfunction models induced by the α1 -adrenoceptor agonist midodrine and muscarinic receptor antagonist atropine, and bladder outlet obstruction. To assess potential side effects, the number of stools and tracheal insufflation pressure were measured in conscious and anesthetized rats, respectively. RESULTS: ASP8302 demonstrated PAM effects on the rat M3 receptor in cell assays, and augmented cholinergic bladder contractions both in vivo and in vitro. ASP8302 improved voiding efficiency and reduced residual urine volume in two voiding dysfunction models as effectively as distigmine bromide, but unlike distigmine bromide did not affect the number of stools or tracheal insufflation pressure. CONCLUSIONS: Our results in rats indicate that ASP8302 improves voiding dysfunction by potentiating bladder contraction with fewer effects on cholinergic responses in other organs, and suggest a potential advantage over current cholinomimetic drugs for treating micturition disorders caused by insufficient bladder contraction.


Asunto(s)
Agonistas Muscarínicos , Antagonistas Muscarínicos , Receptor Muscarínico M3 , Vejiga Urinaria , Animales , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Contracción Muscular , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M3/fisiología
5.
J Pharmacol Exp Ther ; 379(1): 64-73, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34244231

RESUMEN

Muscarinic M3 (M3) receptors mediate a wide range of acetylcholine (ACh)-induced functions, including visceral smooth-muscle contraction and glandular secretion. Positive allosteric modulators (PAMs) can avoid various side effects of muscarinic agonists with their spatiotemporal receptor activation control and potentially better subtype selectivity. However, the mechanism of allosteric modulation of M3 receptors is not fully understood, presumably because of the lack of a potent and selective PAM. In this study, we investigated the pharmacological profile of ASP8302, a novel PAM of M3 receptors, and explored the principal site of amino-acid sequences in the human M3 receptor required for the potentiation of receptor activation. In cells expressing human M3 and M5 receptors, ASP8302 shifted the concentration-response curve (CRC) for carbachol to the lower concentrations with no significant effects on other subtypes. In a binding study with M3 receptor-expressing membrane, ASP8302 also shifted the CRC for ACh without affecting the binding of orthosteric agonists. Similar shifts in the CRC of contractions by multiple stimulants were also confirmed in isolated human bladder strips. Mutagenesis analysis indicated no interaction between ASP8302 and previously reported allosteric sites; however, it identified threonine 230 as the amino acid essential for the PAM effect of ASP8302. These results demonstrate that ASP8302 enhances the activation of human M3 receptors by interacting with a single amino acid distinct from the reported allosteric sites. Our findings suggest not only a novel allosteric site of M3 receptors but also the potential application of ASP8302 to diseases caused by insufficient M3 receptor activation. SIGNIFICANCE STATEMENT: The significance of this study is that the novel M3 receptor positive allosteric modulator ASP8302 enhances the activation of human M3 receptor by interacting with a residue distinct from the reported allosteric sites. The finding of Thr230 as a novel amino acid involved in the allosteric modulation of M3 receptors provides significant insight into further research of the mechanism of allosteric modulation of M3 and other muscarinic receptors.


Asunto(s)
Sitio Alostérico/efectos de los fármacos , Agonistas Muscarínicos/química , Agonistas Muscarínicos/metabolismo , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Sitio Alostérico/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Agonistas Muscarínicos/farmacología , Técnicas de Cultivo de Órganos , Receptor Muscarínico M3/genética , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
6.
Nano Lett ; 21(10): 4415-4422, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33978424

RESUMEN

Spatially controlling the Fermi level of topological insulators and keeping their electronic states stable are indispensable processes to put this material into practical use for semiconductor spintronics devices. So far, however, such a method has not been established yet. Here we show a novel method for doping a hole into n-type topological insulators Bi2X3 (X= Se, Te) that overcomes the shortcomings of the previous reported methods. The key of this doping is to adsorb H2O on Bi2X3 decorated with a small amount of carbon, and its trigger is the irradiation of a photon with sufficient energy to excite the core electrons of the outermost layer atoms. This method allows controlling the doping amount by the irradiation time and acts as photolithography. Such a tunable doping makes it possible to design the electronic states at the nanometer scale and, thus, paves a promising avenue toward the realization of novel spintronics devices based on topological insulators.

7.
J Biomed Mater Res B Appl Biomater ; 109(11): 1807-1816, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33783121

RESUMEN

This study evaluated the performance of a new O3 /H2 O2 mixed gas sterilization instrument for killing microorganisms and inactivating bacterial endotoxin at low temperatures. Sterility assurance level was achieved by an over 6-log reduction of Geobacillus stearothermophilus ATCC 12980, and the decimal reduction value was 0.77 min in sterilization mode. A reduction of over 3 logs in Limulus amebocyte lysate coagulation activity of purified endotoxin from Escherichia coli was observed after treatment in endotoxin-inactivation mode. The same inactivation ability was observed when treating dried bacterial cells. Biomaterials made of polymer or metal did not exhibit cytotoxicity after gas exposure at O3 concentrations below 200 ppm. As the results of human cell-based pyrogen testing, significant amounts of endotoxin that were over the limit for medical devices contacting cerebrospinal fluid (2.15 EU/device) were detected on scissors washed with a washer-disinfector and sterilized with ethylene oxide or autoclaving. In contrast, endotoxin decreased to 0.29 ± 0.05 EU/device after O3 /H2 O2 mixed gas sterilization in endotoxin-inactivation mode. Compared to conventional gas sterilization methods, O3 /H2 O2 mixed gas has high sterilization ability and a strong capacity to inactivate endotoxin. It is expected that this sterilization technology will improve the safety of reusable medical devices and utensils for regenerative medicine.


Asunto(s)
Desinfección , Endotoxinas/química , Óxido de Etileno/química , Peróxido de Hidrógeno/química , Escherichia coli/química , Geobacillus stearothermophilus/química , Humanos
8.
Nat Commun ; 12(1): 1462, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674608

RESUMEN

Spin-momentum locking is essential to the spin-split Fermi surfaces of inversion-symmetry broken materials, which are caused by either Rashba-type or Zeeman-type spin-orbit coupling (SOC). While the effect of Zeeman-type SOC on superconductivity has experimentally been shown recently, that of Rashba-type SOC remains elusive. Here we report on convincing evidence for the critical role of the spin-momentum locking on crystalline atomic-layer superconductors on surfaces, for which the presence of the Rashba-type SOC is demonstrated. In-situ electron transport measurements reveal that in-plane upper critical magnetic field is anomalously enhanced, reaching approximately three times the Pauli limit at T = 0. Our quantitative analysis clarifies that dynamic spin-momentum locking, a mechanism where spin is forced to flip at every elastic electron scattering, suppresses the Cooper pair-breaking parameter by orders of magnitude and thereby protects superconductivity. The present result provides a new insight into how superconductivity can survive the detrimental effects of strong magnetic fields and exchange interactions.

9.
Phys Rev Lett ; 125(17): 176401, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33156655

RESUMEN

The electrons in 2D systems with broken inversion symmetry are spin-polarized due to spin-orbit coupling and provide perfect targets for observing exotic spin-related fundamental phenomena. We observe a Fermi surface with a novel spin texture in the 2D metallic system formed by indium double layers on Si(111) and find that the primary origin of the spin-polarized electronic states of this system is the orbital angular momentum and not the so-called Rashba effect. The present results deepen the understanding of the physics arising from spin-orbit coupling in atomic-layered materials with consequences for spintronic devices and the physics of the superconducting state.

10.
Sci Rep ; 9(1): 9645, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273264

RESUMEN

A proper understanding on the charge mobility in organic materials is one of the key factors to realize highly functionalized organic semiconductor devices. So far, however, although a number of studies have proposed the carrier transport mechanism of rubrene single crystal to be band-like, there are disagreements between the results reported in these papers. Here, we show that the actual dispersion widths of the electronic bands formed by the highest occupied molecular orbital are much smaller than those reported in the literature, and that the disagreements originate from the diffraction effect of photoelectron and the vibrations of molecules. The present result indicates that the electronic bands would not be the main channel for hole mobility in case of rubrene single crystal and the necessity to consider a more complex picture like molecular vibrations mediated carrier transport. These findings open an avenue for a thorough insight on how to realize organic semiconductor devices with high carrier mobility.

11.
Eur J Pharmacol ; 853: 11-17, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30853531

RESUMEN

Bladder dysfunctions associated with benign prostatic hyperplasia are not sufficiently alleviated by current pharmacotherapies. Lysophosphatidic acid (LPA) is a phospholipid with diverse biological effects. LPA modulates prostate and urethral contraction via the type 1 LPA (LPA1) receptor, suggesting the potential of the LPA1 receptor as a therapeutic target. However, the role of LPA and the LPA1 receptor in bladder function has not been studied in vivo. We investigated the effects of LPA and the novel LPA1 receptor antagonist ASP6432 (potassium 1-(2-{[3,5-dimethoxy-4-methyl-N-(3-phenylpropyl)benzamido]methyl}- 1,3-thiazole-4-carbonyl)- 3-ethyl-2,2-dioxo-2λ6-diazathian-1-ide) on the micturition reflex in conscious rats using cystometry. Intravenous infusion of LPA decreased the micturition interval and threshold pressure with no apparent changes in baseline pressure or maximum intravesical pressure. ASP6432 inhibited the LPA-induced decrease in MI. In contrast, ASP6432 had no effect on the LPA-induced decrease in threshold pressure. Similarly, ASP6432 had no effect on either baseline pressure or maximum intravesical pressure. We also evaluated the effect of ASP6432 on the urinary frequency induced by the nitric oxide synthase inhibitor L-Nω-nitro arginine methyl ester (L-NAME). Intravenous L-NAME administration decreased the micturition interval. ASP6432 dose-dependently reversed the L-NAME-induced decrease in micturition interval. Our findings demonstrate for the first time that LPA causes bladder overactivity in rats. ASP6432 inhibited the LPA- and L-NAME-induced decrease in micturition interval, suggesting a significant role for the LPA1 receptor in regulating the functional capacity of the bladder. Our results also suggest the potential of ASP6432 as a novel therapy for the treatment of bladder dysfunction associated with lower urinary tract diseases.


Asunto(s)
Estado de Conciencia , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Tiazoles/farmacología , Micción/efectos de los fármacos , Animales , Benzamidas , Relación Dosis-Respuesta a Droga , Femenino , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria Hiperactiva/fisiopatología
12.
Eur J Pharmacol ; 847: 83-90, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658116

RESUMEN

Current pharmacotherapies for voiding dysfunctions are in need of improvement. Lysophosphatidic acid (LPA) is a phospholipid that contracts the urethra by activating type 1 LPA receptors (LPA1). However, the role of LPA1 in regulating urethral tonus during urine voiding which primarily affects the voiding function has not been investigated. To elucidate the role of LPA1 in the regulation of urethral tonus during urine voiding, we investigated the effects of ASP6432, a novel LPA1 antagonist, and the α1-adrenoceptor antagonist tamsulosin on urethral perfusion pressure (UPP) at the filling phase (UPPbase) and the minimum UPP at the voiding phase (UPPnadir) in anesthetized rats under isovolumetric conditions. We further evaluated the effects of ASP6432 and tamsulosin on voiding dysfunction characterized by changes in post-void residual urine (PVR) and voiding efficiency (VE) induced by the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) in conscious rats using single cystometry. ASP6432 dose-dependently decreased UPPbase and UPPnadir, while tamsulosin reduced UPPbase but did not change UPPnadir. ASP6432 dose-dependently suppressed the L-NAME-induced increase in PVR and decrease in VE, whereas tamsulosin did not affect either PVR or VE. We demonstrate that ASP6432 reduced UPPnadir and ameliorated L-NAME-induced voiding dysfunction, neither of which were affected by tamsulosin. Our study results suggest that LPA1 has a significant role in regulating urethral tonus during urine voiding, and highlight the potential of ASP6432 for improving voiding dysfunctions associated with various lower urinary tract diseases.


Asunto(s)
NG-Nitroarginina Metil Éster/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Tamsulosina/farmacología , Uretra/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Orina/fisiología , Animales , Femenino , Masculino , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Uretra/metabolismo , Vejiga Urinaria/metabolismo , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico , Enfermedades de la Vejiga Urinaria/metabolismo
13.
J Pharmacol Exp Ther ; 366(2): 390-396, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884626

RESUMEN

Current pharmacotherapies for lower urinary tract symptoms associated with benign prostate hyperplasia (LUTS/BPH) are in need of improvement. Lysophosphatidic acid (LPA) is a phospholipid with various biologic functions. However, its exact role in the lower urinary tract and its target receptor subtype have not been fully elucidated. We investigated the role of LPA and the type 1 LPA receptor (LPA1) in urethral/prostatic contractile function and prostate cell proliferation by pharmacologically characterizing ASP6432 (potassium 1-(2-{[3,5-dimethoxy-4-methyl-N-(3-phenylpropyl)benzamido]methyl}-1,3-thiazole-4-carbonyl)-3-ethyl-2,2-dioxo-2λ6-diazathian-1-ide), a novel LPA1 antagonist. ASP6432 exhibited potent and selective antagonistic activity against LPA1 in cells expressing LPA receptor subtypes. In isolated rat tissue strips and anesthetized rats, ASP6432 concentration-/dose-dependently inhibited LPA-induced urethra and prostate contractions. In addition, in anesthetized rats, ASP6432 maximally decreased the urethral perfusion pressure (UPP) in the absence of exogenous LPA stimulation by 43% from baseline, whereas tamsulosin, an α1-adrenoceptor antagonist, reduced UPP by 22%. Further, in human prostate stromal cells, ASP6432 significantly and concentration-dependently suppressed LPA-induced bromodeoxyuridine incorporation. These results demonstrate a pivotal role for LPA and LPA1 in the regulation of urethral tonus and prostate cell proliferation. The potent urethral relaxation and inhibition of prostatic stromal cell growth indicate the potential of ASP6432 as a novel therapeutic agent for LUTS/BPH.


Asunto(s)
Próstata/citología , Próstata/efectos de los fármacos , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Tiazoles/farmacología , Uretra/efectos de los fármacos , Uretra/fisiología , Benzamidas , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Contracción Muscular/efectos de los fármacos , Próstata/fisiología , Células del Estroma/citología , Células del Estroma/efectos de los fármacos
14.
Nano Lett ; 17(4): 2287-2293, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28358199

RESUMEN

Self-assembled organic molecules can potentially be an excellent source of charge and spin for two-dimensional (2D) atomic-layer superconductors. Here we investigate 2D heterostructures based on In atomic layers epitaxially grown on Si and highly ordered metal-phthalocyanine (MPc, M = Mn, Cu) through a variety of techniques: scanning tunneling microscopy, electron transport measurements, angle-resolved photoemission spectroscopy, X-ray magnetic circular dichroism, and ab initio calculations. We demonstrate that the superconducting transition temperature (Tc) of the heterostructures can be modified in a controllable manner. Particularly, the substitution of the coordinated metal atoms from Mn to Cu is found to reverse the Tc shift from negative to positive directions. This distinctive behavior is attributed to a competition of charge and spin effects, the latter of which is governed by the directionality of the relevant d-orbitals. The present study shows the effectiveness of molecule-induced surface doping and the significance of microscopic understanding of the molecular states in these 2D heterostructures.

15.
Phys Rev Lett ; 117(1): 016803, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419582

RESUMEN

A totally anisotropic peculiar Rashba-Bychkov (RB) splitting of electronic bands was found on the Tl/Si(110)-(1×1) surface with C_{1h} symmetry by angle- and spin-resolved photoelectron spectroscopy and first-principles theoretical calculation. The constant energy contour of the upper branch of the RB split band has a warped elliptical shape centered at a k point located between Γ[over ¯] and the edge of the surface Brillouin zone, i.e., at a point without time-reversal symmetry. The spin-polarization vector of this state is in-plane and points almost the same direction along the whole elliptic contour. This novel nonvortical RB spin structure is confirmed as a general phenomenon originating from the C_{1h} symmetry of the surface.

16.
Sci Rep ; 5: 18359, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26678594

RESUMEN

Scanning tunneling microscopy (STM) observation reveals that a cyclic thiazyl diradical, BDTDA (= 4,4'-bis(1,2,3,5-dithiadiazolyl)), forms a well-ordered monolayer honeycomb lattice consisting of paramagnetic corners with unpaired electrons on a clean Cu(111) surface. This BDTDA lattice is commensurate with the triangular lattice of Cu(111), with the former being 3 × 3 larger than the latter. The formation of the BDTDA monolayer structure, which is significantly different from its bulk form, is attributed to an interaction with the metal surface as well as the intermolecular assembling forces. STM spectroscopy measurements on the BDTDA molecules indicate the presence of a characteristic zero-bias anomaly centered at the Fermi energy. The origin of this zero-bias anomaly is discussed in terms of the Dirac cones inherent to the honeycomb structure.

17.
Phys Rev Lett ; 114(6): 066802, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25723236

RESUMEN

The surface state of a Z(2) topological insulator connects with the conduction and valence band continua of the bulk, thereby bridging the band gap of the volume. We investigate this connection of the surface and bulk electronic structure for Sb(2)Te(3)(0001) by photoemission experiments and calculations. Upon crossing the topmost valence band the topological surface state (TSS) maintains a coherent spectral signature, a two-dimensional character, and a linear dispersion relation. Surface-bulk coupling manifests itself in the spectra through (i) a characteristic kink in the TSS dispersion as it crosses the topmost valence band and (ii) the appearance of hybridization gaps between the TSS and bulk-derived surface resonance states at higher binding energies. The findings provide a natural explanation for the unexpectedly weak surface-bulk mixing indicated by recent transport experiments on Sb(2)Te(3).

18.
Phys Rev Lett ; 111(17): 176402, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24206505

RESUMEN

We present a combined experimental and theoretical study on the unoccupied surface electronic structure of the Tl/Si(111) surface. Spin- and angle-resolved inverse-photoemission measurements with sensitivity to both the in-plane and the out-of-plane polarization direction detect a spin-orbit-split surface state, which is well described by theoretical calculations. We demonstrate that the spin polarization vector rotates from the classical in-plane Rashba polarization direction around Γ[over ¯] to the direction perpendicular to the surface at the K[over ¯](K[over ¯]') points-a direct consequence of the symmetry of the 2D hexagonal system. A giant splitting in energy of about 0.6 eV is observed and attributed to the strong localization of the unoccupied surface state close to the heavy Tl atoms. This leads to completely out-of-plane spin-polarized valleys in the vicinity of the Fermi level. As the valley polarization is oppositely oriented at the K[over ¯] and K[over ¯]' points, backscattering should be strongly suppressed in this system.

19.
Nat Commun ; 4: 2073, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23811797

RESUMEN

The addition of the valley degree of freedom to a two-dimensional spin-polarized electronic system provides the opportunity to multiply the functionality of next-generation devices. So far, however, such devices have not been realized due to the difficulty to polarize the valleys, which is an indispensable step to activate this degree of freedom. Here we show the formation of 100% spin-polarized valleys by a simple and easy way using the Rashba effect on a system with C3 symmetry. This polarization, which is much higher than those in ordinary Rashba systems, results in the valleys acting as filters that can suppress the backscattering of spin-charge. The present system is formed on a silicon substrate, and therefore opens a new avenue towards the realization of silicon spintronic devices with high efficiency.

20.
Eur J Pharmacol ; 708(1-3): 14-20, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23528358

RESUMEN

Since the introduction of 2-aminoethoxydiphenylborate (2-APB) as a membrane permeable modulator of inositol (1,4,5)-trisphosphate receptors, subsequent studies have revealed additional actions of this chemical on multiple Ca(2+)-permeable ionic channels in the plasma membrane. However, no reports have yet examined 2-APB as a modulator targeting contractile machinery in smooth muscle, independent of Ca(2+) mobilization, namely Ca(2+) sensitization. Here, we assessed whether or not 2-APB affects intracellular signaling pathways of Ca(2+) sensitization for contraction using α-toxin permeabilized human detrusor smooth muscle. Although contractions were induced by application of Ca(2+)-containing bath solutions, 2-APB had little effect on contractions induced by 1 µM Ca(2+) alone but significantly reversed the carbachol-induced augmentation of Ca(2+)-induced contraction in the presence of guanosine triphosphate (carbachol-induced Ca(2+) sensitization). The rho kinase inhibitor Y-27632 and protein kinase C inhibitor GF-109203X also reversed the carbachol-mediated Ca(2+) sensitization. Additional application of 2-APB caused a small but significant further attenuation of the contraction in the presence of GF-109203X but not in the presence of Y-27632. Like carbachol, the rho kinase activator; sphingosylphosphorylcholine, protein kinase C activator; phorbol 12,13 dibutyrate, and myosin light chain phosphatase inhibitor; calyculin-A all induced Ca(2+) sensitization. However, the inhibitory activity of 2-APB was limited with sphingosylphosphorylcholine-induced Ca(2+) sensitization. This study revealed a novel inhibitory effect of 2-APB on smooth muscle contractility through inhibition of the rho kinase pathway.


Asunto(s)
Compuestos de Boro/farmacología , Músculo Liso/efectos de los fármacos , Anciano , Amidas/farmacología , Toxinas Bacterianas/farmacología , Calcio/fisiología , Proteínas Hemolisinas/farmacología , Humanos , Técnicas In Vitro , Indoles/farmacología , Maleimidas/farmacología , Músculo Liso/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Quinasas Asociadas a rho/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA