Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Cancers (Basel) ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791963

RESUMEN

TIM-3 was originally identified as a negative regulator of helper T cells and is expressed on dendritic cells (DCs). Since the inhibition of TIM-3 on DCs has been suggested to enhance T cell-mediated anti-tumor immunity, we examined its expression on DCs within the tumor microenvironment (TME) in colorectal cancer (CRC) using transcriptomic data from a public database (n = 592) and immunohistochemical evaluations from our cohorts of CRC (n = 115). The expression of TIM-3 on DCs in vitro was examined by flow cytometry, while the expression of its related molecules, cGAS and STING, on immature and mature DCs was assessed by Western blotting. The expression of HAVCR2 (TIM-3) was strongly associated with the infiltration of DCs within the TME of CRC. Immunohistochemical staining of clinical tissue samples revealed that tumor-infiltrating DCs expressed TIM-3; however, their number at the tumor-invasive front significantly decreased with stage progression. TIM-3 expression was higher on immature DCs than on mature DCs from several different donors (n = 6). Western blot analyses showed that the expression of STING was higher on mature DCs than on immature DCs, which was opposite to that of TIM-3. We demonstrated that TIM-3 was highly expressed on tumor-infiltrating DCs of CRC and that its expression was higher on immature DCs than on mature DCs.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731846

RESUMEN

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas B-raf , Células del Estroma , Factor de Crecimiento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Microambiente Tumoral/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Mutación , Transcriptoma , Transducción de Señal , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Adenoma/genética , Adenoma/patología , Adenoma/metabolismo
3.
Clin J Gastroenterol ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761341

RESUMEN

An 81-year-old woman who underwent laparoscopic-assisted low anterior resection with instrumented anastomosis using the double stapling technique for rectal cancer 5 years ago was found to have an enlarged anastomotic mass on computed tomography. On colonoscopy, the anastomotic mass was observed as a 30-mm-sized subepithelial lesion, which was presumed to be the submucosa on endoscopic ultrasonography (EUS). EUS-guided fine-needle aspiration was performed; however, no cellular components were collected. Therefore, endoscopic submucosal dissection (ESD) was performed to remove the entire anastomotic mass. However, any lesion in the submucosa was not detected during ESD, and the lesion was suspected to be located deeper than the submucosa. Therefore, EUS was performed from the muscule layer just below the dissected submucosa, and the mass was detected outside the muscle layer in contact with the rectal wall. Upon endoscopic incision of the muscle layer, milky white mucus was excreted into the rectal lumen. Subsequently, the scope was advanced to an area outside the muscle layer where the mass was located, which was a closed lumen with mucus retention. Surface biopsy of the closed lumen revealed normal colonic mucosa. Therefore, the subepithelial lesion was diagnosed as an implantation cyst arising outside the rectal wall.

4.
Cells ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474369

RESUMEN

Regulated necrosis, termed necroptosis, represents a potential therapeutic target for refractory cancer. Ceramide nanoliposomes (CNLs), considered potential chemotherapeutic agents, induce necroptosis by targeting the activating protein mixed lineage kinase domain-like protein (MLKL). In the present study, we examined the potential of pronecroptotic therapy using CNLs for refractory triple-negative breast cancer (TNBC), for which there is a lack of definite and effective therapeutic targets among the various immunohistological subtypes of breast cancer. MLKL mRNA expression in tumor tissues was significantly higher in TNBC patients than in those with non-TNBC subtypes. Similarly, among the 50 breast cancer cell lines examined, MLKL expression was higher in TNBC-classified cell lines. TNBC cell lines were more susceptible to the therapeutic effects of CNLs than the non-TNBC subtypes of breast cancer cell lines. In TNBC-classified MDA-MB-231 cells, the knockdown of MLKL suppressed cell death induced by CNLs or the active substance short-chain C6-ceramide. Accordingly, TNBC cells were prone to CNL-evoked necroptotic cell death. These results will contribute to the development of CNL-based pronecroptotic therapy for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Apoptosis , Necrosis , Ceramidas/farmacología
5.
Plants (Basel) ; 13(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38475453

RESUMEN

Researchers have described protection mechanisms against the photoinhibition of photosystems under strong-light stress. Cyclic Electron Flow (CEF) mitigates electron acceptor-side limitation, and thus contributes to Photosystem I (PSI) protection. Chloroplast protease removes damaged protein to assist with protein turn over, which contributes to the quality control of Photosystem II (PSII). The PGR5 protein is involved in PGR5-dependent CEF. The FTSH protein is a chloroplast protease which effectively degrades the damaged PSII reaction center subunit, D1 protein. To investigate how the PSI photoinhibition phenotype in pgr5 would be affected by adding the ftsh mutation, we generated double-mutant pgr5ftsh via crossing, and its phenotype was characterized in the green algae Chlamydomonas reinhardtii. The cells underwent high-light incubation as well as low-light incubation after high-light incubation. The time course of Fv/Fm values in pgr5ftsh showed the same phenotype with ftsh1-1. The amplitude of light-induced P700 photo-oxidation absorbance change was measured. The amplitude was maintained at a low value in the control and pgr5ftsh during high-light incubation, but was continuously decreased in pgr5. During the low-light incubation after high-light incubation, amplitude was more rapidly recovered in pgr5ftsh than pgr5. We concluded that the PSI photoinhibition by the pgr5 mutation is mitigated by an additional ftsh1-1 mutation, in which plastoquinone pool would be less reduced due to damaged PSII accumulation.

6.
Esophagus ; 21(2): 165-175, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38324215

RESUMEN

BACKGROUND: Chemotherapy has the potential to induce CD8+ T-cell infiltration in the tumor microenvironment (TME) and activate the anti-tumor immune response in several cancers including esophageal squamous cell carcinoma (ESCC). The tumor cell-intrinsic cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been known as a critical component for regulating immune cell activation in the TME. However, its effect on the infiltration of immune cells induced by chemotherapy in the ESCC TME has not been investigated. METHODS: We examined the effect of the tumor-cell intrinsic cGAS-STING pathway on the infiltration of CD8+ T cells induced by chemotherapy in ESCC using ESCC cell lines and surgically resected ESCC specimens from patients who received neoadjuvant chemotherapy (NAC). RESULTS: We found that chemotherapeutic agents, including 5-fluorouracil (5-FU) and cisplatin (CDDP), activated the cGAS-STING pathway, consequently inducing the expression of type I interferon and T-cell-attracting chemokines in ESCC cells. Moreover, the tumor cell-intrinsic expression of cGAS-STING was significantly and positively associated with the density of CD8+ T cells in ESCC after NAC. However, the tumor cell-intrinsic expression of cGAS-STING did not significantly impact clinical outcomes in patients with ESCC after NAC. CONCLUSION: Our findings suggest that the tumor cell-intrinsic cGAS-STING pathway might contribute to chemotherapy-induced immune cell activation in the ESCC TME.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Interferón Tipo I , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Linfocitos T CD8-positivos , Neoplasias Esofágicas/tratamiento farmacológico , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/uso terapéutico , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Interferón Tipo I/uso terapéutico , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Microambiente Tumoral
7.
Elife ; 122023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37986577

RESUMEN

Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejo de Proteína del Fotosistema II/genética , Triptófano/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metaloendopeptidasas/metabolismo
8.
Cancers (Basel) ; 15(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894310

RESUMEN

TGFß signaling in the tumor microenvironment (TME) drives immune evasion and is a negative predictor of immune checkpoint inhibitor (ICI) efficacy in colorectal cancer (CRC). TIM-3, an inhibitory receptor implicated in anti-tumor immune responses and ICI resistance, has emerged as an immunotherapeutic target. This study investigated TIM-3, M2 macrophages and the TGFß-activated TME, in association with microsatellite instability (MSI) status and consensus molecular subtypes (CMSs). Transcriptomic cohorts of CRC tissues, organoids and xenografts were examined (n = 2240). TIM-3 and a TGFß-inducible stromal protein, VCAN, were evaluated in CRC specimens using immunohistochemistry (n = 45). TIM-3 expression on monocytes and generated M2 macrophages was examined by flow cytometry. We found that the expression of HAVCR2 (TIM-3) significantly correlated with the transcriptional signatures of TGFß, TGFß-dependent stromal activation and M2 macrophage, each of which were co-upregulated in CMS4, CMS1 and MSI CRCs across all datasets. Tumor-infiltrating TIM-3+ immune cells accumulated in TGFß-responsive cancer stroma. TIM-3 was increased on M2-polarized macrophages, and on monocytes in response to TGFß treatment. In conclusion, we identified a close association between TIM-3 and M2-like polarization of macrophages in the TGFß-rich TME. Our findings provide new insights into personalized immunotherapeutic strategies based on the TME for CRCs.

9.
Front Plant Sci ; 14: 1279699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841601

RESUMEN

Photosynthetic electron transfer and its regulation processes take place on thylakoid membranes, and the thylakoid of vascular plants exhibits particularly intricate structure consisting of stacked grana and flat stroma lamellae. It is known that several membrane remodeling proteins contribute to maintain the thylakoid structure, and one putative example is FUZZY ONION LIKE (FZL). In this study, we re-evaluated the controversial function of FZL in thylakoid membrane remodeling and in photosynthesis. We investigated the sub-membrane localization of FZL and found that it is enriched on curved grana edges of thylakoid membranes, consistent with the previously proposed model that FZL mediates fusion of grana and stroma lamellae at the interfaces. The mature fzl thylakoid morphology characterized with the staggered and less connected grana seems to agree with this model as well. In the photosynthetic analysis, the fzl knockout mutants in Arabidopsis displayed reduced electron flow, likely resulting in higher oxidative levels of Photosystem I (PSI) and smaller proton motive force (pmf). However, nonphotochemical quenching (NPQ) of chlorophyll fluorescence was excessively enhanced considering the pmf levels in fzl, and we found that introducing kea3-1 mutation, lowering pH in thylakoid lumen, synergistically reinforced the photosynthetic disorder in the fzl mutant background. We also showed that state transitions normally occurred in fzl, and that they were not involved in the photosynthetic disorders in fzl. We discuss the possible mechanisms by which the altered thylakoid morphology in fzl leads to the photosynthetic modifications.

10.
Plant Cell Physiol ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37702423

RESUMEN

Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (~10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance and focuses on the mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DPD1 influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.

11.
Plant Physiol ; 193(4): 2498-2512, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606239

RESUMEN

Plants cope with sudden increases in light intensity through various photoprotective mechanisms. Redox regulation by thioredoxin (Trx) systems also contributes to this process. Whereas the functions of f- and m-type Trxs in response to such fluctuating light conditions have been extensively investigated, those of x- and y-type Trxs are largely unknown. Here, we analyzed the trx x single, trx y1 trx y2 double, and trx x trx y1 trx y2 triple mutants in Arabidopsis (Arabidopsis thaliana). A detailed analysis of photosynthesis revealed changes in photosystem I (PSI) parameters under low light in trx x and trx x trx y1 trx y2. The electron acceptor side of PSI was more reduced in these mutants than in the wild type. This mutant phenotype was more pronounced under fluctuating light conditions. During both low- and high-light phases, the PSI acceptor side was largely limited in trx x and trx x trx y1 trx y2. After fluctuating light treatment, we observed more severe PSI photoinhibition in trx x and trx x trx y1 trx y2 than in the wild type. Furthermore, when grown under fluctuating light conditions, trx x and trx x trx y1 trx y2 plants showed impaired growth and decreased level of PSI subunits. These results suggest that Trx x and Trx y prevent redox imbalance on the PSI acceptor side, which is required to protect PSI from photoinhibition, especially under fluctuating light. We also propose that Trx x and Trx y contribute to maintaining the redox balance even under constant low-light conditions to prepare for sudden increases in light intensity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxidación-Reducción , Fotosíntesis , Arabidopsis/fisiología , Luz , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
12.
Gastric Cancer ; 26(6): 878-890, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37542528

RESUMEN

BACKGROUND: HER2 signaling might be involved in the regulation of immune cell activation in the tumor microenvironment (TME) of gastric cancer (GC). However, the relationship between HER2 status and immune cell condition in the HER2-positive GC TME is not clearly understood. METHODS: To investigate the effect of HER2 signaling on the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which contributes to immune cell activation in the GC TME, we evaluated the associations among the expressions of HER2, cGAS-STING, and the number of CD8+ tumor-infiltrating lymphocytes (TIL) by considering HER2 heterogeneity in HER2-positive GC tissues. We also examined the effect of HER2 signaling on the activation of STING signaling in vitro using human HER2-positive GC cell lines. RESULTS: The expression of HER2 is highly heterogeneous in HER2-positive GC tissues, and we found that the number of CD8+ TIL in HER2 high areas was significantly lower than that in HER2 low areas in HER2-positive GC tissues. Intriguingly, the tumor cell-intrinsic expression of STING, but not cGAS, was also significantly lower in the HER2 high areas than the HER2 low areas in HER2-positive GC tissues. Moreover, in vitro experiments, we demonstrated that the blockade of HER2 signaling increased the expression of STING and its target genes, including IFNB1, CXCL9/10/11, and CCL5, in HER2-positive GC cell lines. CONCLUSIONS: Our results suggest that HER2 signaling might suppress immune cell activation in the GC TME by inhibiting STING signaling in tumor cells in HER2-positive GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Regulación hacia Abajo , Linfocitos T CD8-positivos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferones/genética , Interferones/metabolismo , Microambiente Tumoral
13.
Cancers (Basel) ; 15(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37509302

RESUMEN

In order to develop a biomarker predicting the efficacy of treatments for patients with esophageal squamous cell carcinoma (ESCC), we evaluated the subpopulation of T cells in ESCC patients treated with chemotherapy (CT), chemoradiotherapy (CRT), and nivolumab therapy (NT). Fifty-five ESCC patients were enrolled in this study, and peripheral blood samples were collected before and after CT or CRT and during NT. Frequencies of memory, differentiated, and exhausted T cells were evaluated using flow cytometry among cStages, treatment strategies, pathological responses of CT/CRT, and during NT. The frequencies of PD-1+ or TIM-3+CD4+ T cells were significantly higher in patients with cStage IV. PD-1+CD4+ and TIM-3+CD8+ T-cell populations were significantly higher in patients treated with CRT but were not associated with treatment response. The frequencies of both CD4+ and CD8+ CD45RA-CD27+CD127+ central memory T cells (TCM) were significantly decreased during the course of NT in the progressive disease group. Taken together, the alteration in frequency of CD45RA-CD27+CD127+ TCM during NT may be a biomarker to predict its therapeutic response in ESCC patients.

14.
Plant Cell Physiol ; 64(7): 701-703, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37319009
15.
Comput Stat ; : 1-25, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37360994

RESUMEN

This study addressed the issue of determining multiple potential clusters with regularization approaches for the purpose of spatio-temporal clustering. The generalized lasso framework has flexibility to incorporate adjacencies between objects in the penalty matrix and to detect multiple clusters. A generalized lasso model with two L1 penalties is proposed, which can be separated into two generalized lasso models: trend filtering of temporal effect and fused lasso of spatial effect for each time point. To select the tuning parameters, the approximate leave-one-out cross-validation (ALOCV) and generalized cross-validation (GCV) are considered. A simulation study is conducted to evaluate the proposed method compared to other approaches in different problems and structures of multiple clusters. The generalized lasso with ALOCV and GCV provided smaller MSE in estimating the temporal and spatial effect compared to unpenalized method, ridge, lasso, and generalized ridge. In temporal effects detection, the generalized lasso with ALOCV and GCV provided relatively smaller and more stable MSE than other methods, for different structure of true risk values. In spatial effects detection, the generalized lasso with ALOCV provided higher index of edges detection accuracy. The simulation also suggested using a common tuning parameter over all time points in spatial clustering. Finally, the proposed method was applied to the weekly Covid-19 data in Japan form March 21, 2020, to September 11, 2021, along with the interpretation of dynamic behavior of multiple clusters.

16.
Cancers (Basel) ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37345163

RESUMEN

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in activating immune cells in the tumor microenvironment, thereby contributing to a more favorable response to immune checkpoint inhibitors (ICI) in colorectal cancer (CRC). However, the impact of the expression of cGAS-STING in tumor cells on the infiltration of CD8+ T cells and clinical outcomes in mismatch repair proficient/microsatellite stable (pMMR/MSS) CRC remains largely unknown. Our findings reveal that 56.8% of all pMMR CRC cases were cGAS-negative/STING-negative expressions (cGAS-/STING-) in tumor cells, whereas only 9.9% of all pMMR CRC showed cGAS-positive/STING-positive expression (cGAS+/STING+) in tumor cells. The frequency of cGAS+/STING+ cases was reduced in the advanced stages of pMMR/MSS CRC, and histone methylation might be involved in the down-regulation of STING expression in tumor cells. Since the expression level of cGAS-STING in tumor cells has been associated with the infiltration of CD8+ and/or CD4+ T cells and the frequency of recurrence in pMMR/MSS CRC, decreased expression of cGAS-STING in tumor cells might lead to poor immune cell infiltration and worse prognosis in most pMMR/MSS CRC patients. Our current findings provide a novel insight for the treatment of patients with pMMR/MSS CRC.

17.
Cancer Immunol Immunother ; 72(7): 2233-2244, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36869896

RESUMEN

M2 tumor-associated macrophages (M2-TAMs) promote cancer cell proliferation and metastasis in the TME. Our study aimed to elucidate the mechanism of increased frequency of M2-TAMs infiltration in the colorectal cancer (CRC)-TME, focusing on the resistance to oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we evaluated the correlation between M2-TAM signature and mRNA expression of antioxidant related genes using public datasets, and the expression level of antioxidants in M2-TAMs by flow cytometry and the prevalence of M2-TAMs expressing antioxidants by immunofluorescence staining using surgically resected specimens of CRC (n = 34). Moreover, we generated M0 and M2 macrophages from peripheral blood monocytes and evaluated their resistance to oxidative stress using the in vitro viability assay. Analysis of GSE33113, GSE39582, and The Cancer Genome Atlas (TCGA) datasets indicated that mRNA expression of HMOX1 (heme oxygenase-1 (HO-1)) was significantly positively correlated with M2-TAM signature (r = 0.5283, r = 0.5826, r = 0.5833, respectively). The expression level of both Nrf2 and HO-1 significantly increased in M2-TAMs compared to M1- and M1/M2-TAMs in the tumor margin, and the number of Nrf2+ or HO-1+M2-TAMs in the tumor stroma significantly increased more than those in the normal mucosa stroma. Finally, generated M2 macrophages expressing HO-1 significantly resisted to oxidative stress induced by H2O2 in comparison with generated M0 macrophages. Taken together, our results suggested that an increased frequency of M2-TAMs infiltration in the CRC-TME is related to Nrf2-HO-1 axis mediated resistance to oxidative stress.


Asunto(s)
Neoplasias Colorrectales , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno , Microambiente Tumoral , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Neoplasias Colorrectales/patología , ARN Mensajero/metabolismo
18.
Trends Genet ; 39(5): 342-343, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935219

RESUMEN

Organelle DNAs (orgDNAs) in mitochondria and plastids are generally inherited from the maternal parent; however, it is unclear how their inheritance mode is controlled, particularly in the plastids of seed plants. Chung et al. identify two factors that affect maternal inheritance in tobacco plastids: cold temperature and DNA amount in pollen.


Asunto(s)
Herencia Materna , Plastidios , Herencia Materna/genética , Plastidios/genética , Mitocondrias/genética , ADN , Patrón de Herencia
19.
Pediatr Int ; 65(1): e15494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36740922

RESUMEN

BACKGROUND: Early treatment may improve the prognosis of acute encephalopathy (AE). However, methods for early diagnosis have not yet been established. In this paper, we examined methods for the early diagnosis of AE. METHODS: We extracted data on patients with febrile status epilepticus from the electronic medical records in our department between March 2016 and April 2021. Among these, 79 patients who underwent continuous electroencephalography (cEEG) were included in this study. Patients who exhibited psychomotor retardation or abnormal brain magnetic resonance imaging findings were assigned to Group E (n = 20), and the remaining patients were the control group (Group C, n = 59). The following tests were compared retrospectively between these two groups on admission: cEEG, serum hepatic function tests, and blood coagulation tests. RESULTS: The percentage of patients who exhibited high-amplitude slow waves or flat waves on cEEG at the time of admission was statistically significantly higher in Group E than in Group C (p < 0.01). Moreover, the percentage of patients whose high-amplitude slow waves or flat brain waves on admission disappeared within 6 h after an initial episode of convulsion was statistically significantly lower in Group E than in Group C (p < 0.01). Furthermore, all the items in the coagulation and the hepatic function tests were statistically significantly different in Group E from those in Group C (p < 0.05). CONCLUSION: These results showed that cEEG together with hepatic function and coagulation tests may be useful for the differential diagnosis of AE.


Asunto(s)
Encefalopatías , Estado Epiléptico , Humanos , Estudios Retrospectivos , Encefalopatías/diagnóstico , Convulsiones/diagnóstico , Estado Epiléptico/diagnóstico , Electroencefalografía/métodos
20.
Gastric Cancer ; 26(3): 379-392, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811690

RESUMEN

BACKGROUND: The PI3K/AKT signaling pathway is frequently activated in gastric cancer (GC); however, AKT inhibitors are not effective in unselected GC patients in clinical trials. Mutations in AT-rich interactive domain 1A (ARID1A), which are found in approximately 30% of GC patients, activate PI3K/AKT signaling, suggesting that targeting the ARID1A deficiency-activated PI3K/AKT pathway is a therapeutic candidate for ARID1A-deficient GC. METHODS: The effect of AKT inhibitors was evaluated using cell viability and colony formation assays in ARID1A-deficient and ARID1A knockdown ARID1A-WT GC cells as well as in HER2-positive and HER2-negative GC. The Cancer Genome Atlas cBioPortal and Gene Expression Omnibus microarray databases were accessed to determine the extent of dependence of GC cell growth on the PI3K/AKT signaling pathway. RESULTS: AKT inhibitors decreased the viability of ARID1A-deficient cells and the inhibitory effect was greater in ARID1A-deficient/HER2-negative GC cells. Bioinformatics data suggested that PI3K/AKT signaling plays a greater role in proliferation and survival in ARID1A-deficient/HER2-negative GC cells than in ARID1A-deficient/HER2-positive cells, supporting the higher therapeutic efficacy of AKT inhibitors. CONCLUSIONS: The effect of AKT inhibitors on cell proliferation and survival is affected by HER2 status, providing a rationale for exploring targeted therapy using AKT inhibitors in ARID1A-deficient/HER2-negative GC.


Asunto(s)
Neoplasias Gástricas , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA