Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3340, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649703

RESUMEN

During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.


Asunto(s)
Extremidades , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Regeneración , Proteínas de Xenopus , Xenopus laevis , Animales , Proliferación Celular/genética , Extremidades/fisiología , Edición Génica , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Larva/crecimiento & desarrollo , Larva/genética , Regeneración/genética , Regeneración/fisiología , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Masculino , Femenino
2.
ACS Synth Biol ; 11(9): 3088-3099, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35998348

RESUMEN

The physical stability of bacterial chromosomes is important for their in vitro manipulation, while genetic stability is important in vivo. However, extracted naked chromosomes in the open circular form are fragile due to nicks and gaps. Using a nick/gap repair and negative supercoiling reaction (named SCR), we first achieved the negative supercoiling of the whole genomes extracted from Escherichia coli and Vibrio natriegens cells. Supercoiled chromosomes of 0.2-4.6 megabase (Mb) were separated by size using a conventional agarose gel electrophoresis and served as DNA size markers. We also achieved the enzymatic replication of 1-2 Mb chromosomes using the reconstituted E. coli replication-cycle reaction (RCR). Electroporation-ready 1 Mb chromosomes were prepared by a modified SCR performed at a low salt concentration (L-SCR) and directly introduced into commercial electrocompetent E. coli cells. Since successful electroporation relies on the genetic stability of a chromosome in cells, genetically stable 1 Mb chromosomes were developed according to a portable chromosome format (PCF). Using physically and genetically stabilized chromosomes, the democratization of genome synthetic biology will be greatly accelerated.


Asunto(s)
Cromosomas Bacterianos , Escherichia coli , Cromosomas/genética , Cromosomas Bacterianos/genética , ADN , ADN Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Biología Sintética
3.
Genes Cells ; 25(7): 498-509, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32323394

RESUMEN

Founder animals carrying high proportions of somatic mutation induced by CRISPR-Cas9 enable a rapid and scalable strategy for the functional screening of numerous target genes in vivo. In this functional screening, genotyping using pooled amplicons with next-generation sequencing is the most suitable approach for large-scale management of multiple samples and accurate evaluation of the efficiency of Cas9-induced somatic mutations at target sites. Here, we present a simple workflow for genotyping of multiple CRISPR-Cas9-based knockout founders by pooled amplicon sequencing. Using custom barcoded primers, pooled amplicons from multiple individuals can be run in a single-indexed library on the Illumina MiSeq platform. Additionally, a user-friendly web tool, CLiCKAR, is available to simultaneously perform demultiplexing of pooled sequence data and evaluation of somatic mutation in each phenotype. CLiCKAR provides users with practical reports regarding the positions of insertions/deletions, as well as the frameshift ratio and tables containing mutation sequences, and read counts of each phenotype, with just a few clicks by the implementation of demultiplexing for pooled sample data and calculation of the frameshift ratio. This genotyping workflow can be harnessed to evaluate genotype-phenotype correlations in CRISPR-Cas9-based loss-of-function screening of numerous target genes in various organisms.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Xenopus/genética , Animales , Femenino , Mutación del Sistema de Lectura , Biblioteca de Genes , Estudios de Asociación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Masculino , Fenotipo , Programas Informáticos , Flujo de Trabajo
4.
Methods Mol Biol ; 1865: 91-103, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151761

RESUMEN

Following completion of the genome sequences of Xenopus tropicalis and X. laevis, gene targeting techniques have become increasingly important for the further development of Xenopus research in the life sciences. Gene knockout using programmable nucleases, such as TALEN and CRISPR/Cas9, has reached a level whereby we can readily and routinely perform loss-of-function analysis of genes of interest in these species. However, there is still room for improvement in gene knock-in techniques owing to some technical problems. To overcome these problems, several knock-in techniques have been developed. Among them, we introduce in this chapter a simple knock-in system mediated by microhomology mediated end joining repair. This protocol allows us to produce knock-in animals for in vivo tagging, promoter/enhancer traps, and transgenesis in both of these Xenopus species.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Técnicas de Sustitución del Gen/métodos , Xenopus/genética , Animales , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Reparación del ADN por Unión de Extremidades/genética , Fertilización In Vitro , Vectores Genéticos/metabolismo , Óvulo/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Xenopus laevis/genética
5.
Biol Open ; 7(1)2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358165

RESUMEN

Amphibians provide an ideal model to study the actions of thyroid hormone (TH) in animal development because TH signaling via two TH receptors, TRα and TRß, is indispensable for amphibian metamorphosis. However, specific roles for the TRß isoform in metamorphosis are poorly understood. To address this issue, we generated trß-disrupted Xenopus tropicalis tadpoles using the CRISPR-Cas system. We first established a highly efficient and rapid workflow for gene disruption in the founder generation (F0) by injecting sgRNA and Cas9 ribonucleoprotein. Most embryos showed severe mutant phenotypes carrying high somatic mutation rates. Utilizing this founder analysis system, we examined the role of trß in metamorphosis. trß-disrupted pre-metamorphic tadpoles exhibited mixed responsiveness to exogenous TH. Specifically, gill resorption and activation of several TH-response genes, including trß itself and two protease genes, were impaired. However, hind limb outgrowth and induction of the TH-response genes, klf9 and fra-2, were not affected by loss of trß Surprisingly, trß-disrupted tadpoles were able to undergo spontaneous metamorphosis normally, except for a slight delay in tail resorption. These results indicate TRß is not required but contributes to the timing of resorptive events of metamorphosis.

6.
Methods Mol Biol ; 1630: 189-203, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28643260

RESUMEN

Xenopus tropicalis is a versatile model organism for studying basic biology such as developmental biology and cell biology, and for biomedical research on human diseases. Current genome editing techniques enable researchers to easily perform gene targeting in various animals. Among them, gene knockout using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) (CRISPR-Cas) system has recently become an indispensable strategy for loss-of-function analysis in vivo. Because of its ease of use, time, and cost efficiencies, CRISPR-Cas has also been applied to X. tropicalis where the gene disruption is highly efficient. In this chapter, we introduce a simple CRISPR-Cas system protocol for gene disruption in X. tropicalis. Based on our protocol, researchers can generate knock-out phenotypes within the shortest of timeframes, a week, and analyze genes of interest in founder generation.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Xenopus/genética , Animales , Ingeniería Genética , Modelos Animales , Fenotipo
7.
Genes Cells ; 21(7): 755-71, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27219625

RESUMEN

Recent advances in genome editing using programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system, have facilitated reverse genetics in Xenopus tropicalis. To establish a practical workflow for analyzing genes of interest using CRISPR-Cas9, we examined various experimental procedures and conditions. We first compared the efficiency of gene disruption between Cas9 protein and mRNA injection by analyzing genotype and phenotype frequency, and toxicity. Injection of X. tropicalis embryos with Cas9 mRNA resulted in high gene-disrupting efficiency comparable with that produced by Cas9 protein injection. To exactly evaluate the somatic mutation rates of on-target sites, amplicon sequencing and restriction fragment length polymorphism analysis using a restriction enzyme or recombinant Cas9 were performed. Mutation rates of two target genes (slc45a2 and ltk) required for pigmentation were estimated to be over 90% by both methods in animals exhibiting severe phenotypes, suggesting that targeted somatic mutations were biallelically introduced in almost all somatic cells of founder animals. Using a heteroduplex mobility assay, we also showed that off-target mutations were induced at a low rate. Based on our results, we propose a CRISPR-Cas9-mediated gene disruption workflow for a rapid and efficient analysis of gene function using X. tropicalis founders.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , ARN Mensajero/farmacología , Xenopus/genética , Animales , Embrión no Mamífero , Desarrollo Embrionario/genética , Marcación de Gen , Ingeniería Genética , Mutación , Fenotipo , ARN Mensajero/genética , Xenopus/crecimiento & desarrollo
8.
Genes Cells ; 21(4): 358-69, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26914410

RESUMEN

Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification-specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac-Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac-Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac-Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration.


Asunto(s)
Histonas/metabolismo , Proteínas de Xenopus/metabolismo , Acetilación , Animales , Animales Modificados Genéticamente , Desarrollo Embrionario , Código de Histonas , Especies Reactivas de Oxígeno/metabolismo , Regeneración , Cola (estructura animal)/fisiología , Xenopus laevis
9.
Nat Protoc ; 11(1): 118-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26678082

RESUMEN

Programmable nucleases enable engineering of the genome by utilizing endogenous DNA double-strand break (DSB) repair pathways. Although homologous recombination (HR)-mediated gene knock-in is well established, it cannot necessarily be applied in every cell type and organism because of variable HR frequencies. We recently reported an alternative method of gene knock-in, named the PITCh (Precise Integration into Target Chromosome) system, assisted by microhomology-mediated end-joining (MMEJ). MMEJ harnesses independent machinery from HR, and it requires an extremely short homologous sequence (5-25 bp) for DSB repair, resulting in precise gene knock-in with a more easily constructed donor vector. Here we describe a streamlined protocol for PITCh knock-in, including the design and construction of the PITCh vectors, and their delivery to either human cell lines by transfection or to frog embryos by microinjection. The construction of the PITCh vectors requires only a few days, and the entire process takes ∼ 1.5 months to establish knocked-in cells or ∼ 1 week from injection to early genotyping in frog embryos.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cromosomas/genética , Reparación del ADN por Unión de Extremidades/genética , Enzimas de Restricción del ADN/metabolismo , Técnicas de Sustitución del Gen/métodos , Animales , Línea Celular , Humanos , Homología de Secuencia de Ácido Nucleico
10.
PLoS One ; 10(11): e0142946, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26580070

RESUMEN

Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.


Asunto(s)
Desoxirribonucleasas/genética , Efecto Fundador , Técnicas de Inactivación de Genes/métodos , ARN Mensajero/genética , Xenopus laevis/genética , Animales , Secuencia de Bases , Desoxirribonucleasas/metabolismo , Embrión no Mamífero , Proteínas del Ojo/genética , Femenino , Fertilización , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Proteínas de Homeodominio/genética , Masculino , Microinyecciones , Datos de Secuencia Molecular , Monofenol Monooxigenasa/deficiencia , Monofenol Monooxigenasa/genética , Oocitos/citología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/deficiencia , Factores de Transcripción Paired Box/genética , Fenotipo , ARN Mensajero/metabolismo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Alineación de Secuencia , Inyecciones de Esperma Intracitoplasmáticas , Activación Transcripcional , Xenopus laevis/embriología
11.
In Vitro Cell Dev Biol Anim ; 51(9): 879-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25920501

RESUMEN

Transcription activator-like effector nucleases (TALENs) have previously been used for targeted genome editing in various organisms including Xenopus laevis. However, because of genomic polyploidization, X. laevis usually possess homeologous genes (homeologs) with quite similar sequences that make the analysis of gene function difficult. In the present study, we show methodological examples of targeted gene modification of X. laevis homeologs. The X. laevis cytoglobin gene (cygb) consists of two homeologs (xlcygba and xlcygbb), and molecular phylogenetic analysis suggested that they have potentially different functions. Thus, there is a need to establish a method of homeolog-specific gene disruption to clarify gene functions in detail. Here, we show successful examples of homeolog-specific and simultaneous gene disruption for xlcygba and xlcygbb. We found that selective digestion can be performed with at least three mismatches in TALEN target sites in both homeologs. This report paves the way for the functional analyses of X. laevis homeologs, even those containing nearly identical sequences.


Asunto(s)
Desoxirribonucleasas/metabolismo , Globinas/genética , Mutagénesis Sitio-Dirigida/métodos , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Secuencia de Bases , Citoglobina , Desoxirribonucleasas/genética , Embrión no Mamífero , Duplicación de Gen , Globinas/metabolismo , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Ácido Nucleico , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología
12.
Nat Commun ; 5: 5560, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25410609

RESUMEN

Genome engineering using programmable nucleases enables homologous recombination (HR)-mediated gene knock-in. However, the labour used to construct targeting vectors containing homology arms and difficulties in inducing HR in some cell type and organisms represent technical hurdles for the application of HR-mediated knock-in technology. Here, we introduce an alternative strategy for gene knock-in using transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) mediated by microhomology-mediated end-joining, termed the PITCh (Precise Integration into Target Chromosome) system. TALEN-mediated PITCh, termed TAL-PITCh, enables efficient integration of exogenous donor DNA in human cells and animals, including silkworms and frogs. We further demonstrate that CRISPR/Cas9-mediated PITCh, termed CRIS-PITCh, can be applied in human cells without carrying the plasmid backbone sequence. Thus, our PITCh-ing strategies will be useful for a variety of applications, not only in cultured cells, but also in various organisms, including invertebrates and vertebrates.


Asunto(s)
Sistemas CRISPR-Cas , ADN/metabolismo , Desoxirribonucleasas , Técnicas de Sustitución del Gen/métodos , Animales , Secuencia de Bases , Bombyx , Ingeniería Genética , Vectores Genéticos , Recombinación Homóloga , Humanos , Datos de Secuencia Molecular , Plásmidos , Saccharomyces cerevisiae , Xenopus
13.
Dev Growth Differ ; 56(1): 108-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24329851

RESUMEN

Transcription activator-like effector nucleases (TALENs) have been extensively used in genome editing in various organisms. In some cases, however, it is difficult to efficiently disrupt both paralogous genes using a single pair of TALENs in Xenopus laevis because of its polyploidy. Here, we report targeted mutagenesis of multiple and paralogous genes using two pairs of TALENs in X. laevis. First, we show simultaneous targeted mutagenesis of three genes, tyrosinase paralogues (tyra and tyrb) and enhanced green fluorescent protein (egfp) by injection of two TALENs pairs in transgenic embryos carrying egfp. Consistent with the high frequency of both severe phenotypic traits, albinism and loss of GFP fluorescence, frameshift mutation rates of tyr paralogues and egfp reached 40-80%. Next, we show early introduction of TALEN-mediated mutagenesis of these target loci during embryogenesis. Finally, we also demonstrate that two different pairs of TALENs can simultaneously introduce mutations to both paralogues encoding histone chaperone with high efficiency. Our results suggest that targeted mutagenesis of multiple genes using TALENs can be applied to analyze the functions of paralogous genes with redundancy in X. laevis.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Mutagénesis Sitio-Dirigida/métodos , Animales , Endodesoxirribonucleasas/genética , Genes/genética , Xenopus laevis
14.
Sci Rep ; 3: 3379, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24287550

RESUMEN

Transcription activator-like effector (TALE) nuclease (TALEN) is a site-specific nuclease, which can be freely designed and easily constructed. Numerous methods of constructing TALENs harboring different TALE scaffolds and repeat variants have recently been reported. However, the functionalities of structurally different TALENs have not yet been compared. Here, we report on the functional differences among several types of TALENs targeting the same loci. Using HEK293T cell-based single-strand annealing and Cel-I nuclease assays, we found that TALENs with periodically-patterned repeat variants harboring non-repeat-variable di-residue (non-RVD) variations (Platinum TALENs) showed higher activities than TALENs without non-RVD variations. Furthermore, the efficiencies of gene disruption mediated by Platinum TALENs in frogs and rats were significantly higher than in previous reports. This study therefore demonstrated an efficient system for the construction of these highly active Platinum TALENs (Platinum Gate system), which could establish a new standard in TALEN engineering.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/genética , Desoxirribonucleasas/genética , Animales , Línea Celular , Endonucleasas/genética , Marcación de Gen/métodos , Células HEK293 , Humanos , Ratas , Xenopus laevis/genética
15.
Anal Chim Acta ; 653(1): 86-90, 2009 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-19800478

RESUMEN

To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low microg g(-1) to ng g(-1) levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...