Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(7): 3799-3816, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35333350

RESUMEN

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of cohesin-dependent axial structures in the fission yeast Schizosaccharomyces pombe. This organism forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the transverse filaments. Hi-C analysis using a highly synchronous population of meiotic S. pombe cells revealed that the axis-loop chromatin structure formed in meiotic prophase was dependent on the Rec8 cohesin complex. In contrast, the Rec8-mediated formation of the axis-loop structure occurred in cells lacking components of LinEs. To dissect the functions of Rec8, we identified a rec8-F204S mutant that lost the ability to assemble the axis-loop structure without losing cohesion of sister chromatids. This mutant showed defects in the formation of the axis-loop structure and LinE assembly and thus exhibited reduced meiotic recombination. Collectively, our results demonstrate that the Rec8-dependent axis-loop structure provides a structural platform essential for LinE assembly, facilitating meiotic recombination of homologous chromosomes, independently of its role in sister chromatid cohesion.


Asunto(s)
Meiosis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Fosfoproteínas/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejo Sinaptonémico , Cohesinas
2.
Genes (Basel) ; 13(2)2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-35205245

RESUMEN

Meiosis is critically different from mitosis in that during meiosis, pairing and segregation of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific cohesin complex plays a central role in the regulation of the processes required for recombination. In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the pairing and recombination of homologous chromosomes in meiosis. Here, we review the current understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Cromátides , Proteínas Cromosómicas no Histona/genética , Meiosis/genética , Cohesinas
3.
Cells ; 9(8)2020 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824370

RESUMEN

The nuclear envelope (NE) consists of the inner and outer nuclear membranes (INM and ONM), and the nuclear pore complex (NPC), which penetrates the double membrane. ONM continues with the endoplasmic reticulum (ER). INM and NPC can interact with chromatin to regulate the genetic activities of the chromosome. Studies in the fission yeast Schizosaccharomyces pombe have contributed to understanding the molecular mechanisms underlying heterochromatin formation by the RNAi-mediated and histone deacetylase machineries. Recent studies have demonstrated that NE proteins modulate heterochromatin formation and functions through interactions with heterochromatic regions, including the pericentromeric and the sub-telomeric regions. In this review, we first introduce the molecular mechanisms underlying the heterochromatin formation and functions in fission yeast, and then summarize the NE proteins that play a role in anchoring heterochromatic regions and in modulating heterochromatin formation and functions, highlighting roles for a conserved INM protein, Lem2.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Telómero/metabolismo
4.
Genes Cells ; 25(4): 288-295, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32049412

RESUMEN

Cdb4 is a protein with unknown functions that binds to curved DNA in vitro in the fission yeast Schizosaccharomyces pombe. Homologues of Cdb4 were identified in a wide range of eukaryotes, including human Ebp1. Both S. pombe Cdb4 and human Ebp1 are nonpeptidase members of the methionine aminopeptidase family. It has been reported that Ebp1 homologues are involved in cell growth regulation and differentiation. However, opposing functions have also been considered and debated upon, and the precise biological functions of this conserved protein are largely unknown. S. pombe cdb4 is a nonessential gene, and no obvious phenotypes have been detected in cells with cdb4 gene deletion. In this study, we identified nup184, encoding a component of the nuclear pore complex, as a gene responsible for the synthetic lethal phenotype associated with cdb4. Furthermore, the synthetic lethal phenotype of Cdb4 was suppressed by over-expression of human Ebp1, suggesting that it has conserved crucial functions in S. pombe Cdb4 and human Ebp1. This synthetic lethal phenotype associated with Cdb4 and Nup184 provides a molecular genetics tool to study the functions of S. pombe Cdb4 and its conserved members of proteins, including human Ebp1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al ADN/deficiencia , Células HeLa , Humanos , Proteínas de Unión al ARN/genética , Schizosaccharomyces/citología , Mutaciones Letales Sintéticas
5.
6.
Nature ; 563(7730): E20, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275478

RESUMEN

An Amendment to this Article has been published and is linked from the HTML version of this paper.

7.
Nature ; 563(7730): E21, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275479

RESUMEN

An Amendment to this Letter has been published and is linked from the HTML version of this paper.

8.
Artículo en Inglés | MEDLINE | ID: mdl-29196561

RESUMEN

The kinetochore is the key apparatus regulating chromosome segregation. Particularly in meiosis, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation), and sister chromatid cohesion mediated by cohesin is protected at centromeres in the following anaphase. Shugoshin, which localizes to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, Moa1 (meikin), which was initially characterized as a mono-orientation factor in fission yeast, also regulates cohesion protection. Moa1, which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1), inducing the persistent accumulation of Bub1 at kinetochores. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Further, molecular genetic analyses reveal a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin during meiosis I.

10.
Cold Spring Harb Protoc ; 2017(9): pdb.prot091769, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733398

RESUMEN

This protocol describes the live observation of chromosome segregation during fission yeast meiosis. To visualize one chromosome of interest, the lac operator (lacO array) is integrated at its centromere-proximal locus, and the lac repressor (lacI)-GFP fusion protein is expressed in a haploid strain. This haploid strain, in which mCherry-tagged tubulin is also expressed exogenously to monitor meiotic progression, is crossed with a nonlabeled haploid strain to induce meiosis. GFP and mCherry signals in resulting zygotes are observed by a fluorescent microscopy during the progression of meiosis.


Asunto(s)
Segregación Cromosómica , Imagenología Tridimensional/métodos , Meiosis , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Haploidia , Microscopía Fluorescente , Cigoto/metabolismo
11.
Cold Spring Harb Protoc ; 2017(9): pdb.prot091777, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733399

RESUMEN

In fission yeast Schizosaccharomyces pombe, initiation of meiosis is repressed by Pat1 kinase. This protocol describes how ectopic inactivation of the temperature-sensitive Pat1-114 kinase in G1-arrested h- /h- diploid cells carrying mat1-Pc induces a highly synchronized commitment to and execution of meiosis. Haploid or diploid pat1-114 mutants without mat1-Pc can also be used for convenience, although less synchrony may be attained compared with induction using true diploids. An essentially identical protocol can be used for induction via inhibition of genetically sensitized Pat1 kinase by ATP analogs.


Asunto(s)
Técnicas Citológicas/métodos , Meiosis , Schizosaccharomyces/citología , Núcleo Celular/metabolismo , Centrifugación , Temperatura
12.
Cold Spring Harb Protoc ; 2017(9): pdb.top079855, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733417

RESUMEN

Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.


Asunto(s)
Meiosis , Schizosaccharomyces/citología , Segregación Cromosómica/genética , Regulación Fúngica de la Expresión Génica , Meiosis/genética , Modelos Biológicos , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología , Esporas Fúngicas/fisiología
13.
Cold Spring Harb Protoc ; 2017(9): pdb.prot091785, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733418

RESUMEN

Schizosaccharomyces pombe cells initiate a sexual differentiation program, which comprises meiosis and spore formation, on nitrogen starvation. This protocol describes a simple procedure to induce meiosis and sporulation semisynchronously in heterozygous diploid S. pombe cells. The procedure is appropriate for a variety of applications, including fluorescence-activated cell sorting (FACS) and northern and western blotting. Zygotic meiosis can also be induced by the same procedure, although less synchronously.


Asunto(s)
Técnicas Citológicas/métodos , Meiosis , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Esporas Fúngicas/fisiología , Centrifugación
14.
Genes Cells ; 22(6): 552-567, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28497540

RESUMEN

In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Meiosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Cinetocoros , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/metabolismo , Fosforilación , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo , Espermatocitos/citología , Espermatocitos/metabolismo , Quinasa Tipo Polo 1
15.
Dev Cell ; 32(2): 220-30, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25579976

RESUMEN

In meiosis, cohesin is required for sister chromatid cohesion, as well as meiotic chromosome axis assembly and recombination. However, mechanisms underlying the multifunctional nature of cohesin remain elusive. Here, we show that fission yeast casein kinase 1 (CK1) plays a crucial role in assembling the meiotic chromosome axis (so-called linear element: LinE) and promoting recombination. An in vitro phosphorylation screening assay identified meiotic cohesin subunit Rec11/SA3 as an excellent substrate of CK1. The phosphorylation of Rec11 by CK1 mediates the interaction with the Rec10/Red1/SCP2 axis component, a key step in meiotic chromosome axis assembly, and is dispensable for sister chromatid cohesion. Crucially, the expression of Rec11-Rec10 fusion protein nearly completely bypasses the requirement for CK1 or cohesin phosphorylation for LinE assembly and recombination. This study uncovers a central mechanism of the cohesin-dependent assembly of the meiotic chromosome axis and recombination apparatus that acts independently of sister chromatid cohesion.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Cromosomas Fúngicos , Meiosis/fisiología , Schizosaccharomyces/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , Recombinación Homóloga/fisiología , Meiosis/genética , Fosforilación/fisiología , Recombinación Genética/genética , Cohesinas
16.
Nature ; 517(7535): 466-71, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25533956

RESUMEN

The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , Cinetocoros/metabolismo , Meiosis , Animales , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Femenino , Humanos , Infertilidad/genética , Infertilidad/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinasa Tipo Polo 1
17.
FEMS Microbiol Rev ; 38(2): 185-200, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24666101

RESUMEN

Proper chromosome segregation during cell division is essential for proliferation, and this is facilitated by kinetochores, large protein complexes assembled on the centromeric region of the chromosomes. Although the sequences of centromeric DNA differ totally among organisms, many components of the kinetochores assembled on centromeres are very well conserved among eukaryotes. To define the identity of centromeres, centromere protein A (CENP-A), which is homologous to canonical histone H3, acts as a landmark for kinetochore assembly. Kinetochores mediate spindle­microtubule attachment and control the movement of chromosomes during mitosis and meiosis. To conduct faithful chromosome segregation, kinetochore assembly and microtubule attachment are elaborately regulated. Here we review the current understanding of the composition, assembly, functions and regulation of kinetochores revealed mainly through studies on fission and budding yeasts. Moreover, because recent cumulative evidence suggests the importance of the regulation of the orientation of kinetochore­microtubule attachment, which differs distinctly between mitosis and meiosis, we focus especially on the molecular mechanisms underlying this regulation.


Asunto(s)
Cinetocoros/metabolismo , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/fisiología , Centrómero/metabolismo , Cinetocoros/química , Meiosis/fisiología , Microtúbulos/metabolismo , Mitosis/fisiología , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
18.
J Biol Chem ; 288(26): 19184-96, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23661703

RESUMEN

Nucleosomes containing the specific histone H3 variant CENP-A mark the centromere locus on each chromatin and initiate kinetochore assembly. For the common type of regional centromeres, little is known in molecular detail of centromeric chromatin organization, its propagation through cell division, and how distinct organization patterns may facilitate kinetochore assembly. Here, we show that in the fission yeast S. pombe, a relatively small number of CENP-A/Cnp1 nucleosomes are found within the centromeric core and that their positioning relative to underlying DNA varies among genetically homogenous cells. Consistent with the flexible positioning of Cnp1 nucleosomes, a large portion of the endogenous centromere is dispensable for its essential activity in mediating chromosome segregation. We present biochemical evidence that Cnp1 occupancy directly correlates with silencing of the underlying reporter genes. Furthermore, using a newly developed pedigree analysis assay, we demonstrated the epigenetic inheritance of Cnp1 positioning and quantified the rate of occasional repositioning of Cnp1 nucleosomes throughout cell generations. Together, our results reveal the plasticity and the epigenetically inheritable nature of centromeric chromatin organization.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Nucleosomas/metabolismo , Schizosaccharomyces/genética , Autoantígenos/genética , Centrómero/ultraestructura , Proteína A Centromérica , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Fúngicas/genética , Silenciador del Gen , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Cinetocoros , Modelos Genéticos , Schizosaccharomyces/metabolismo
19.
EMBO Rep ; 12(11): 1189-95, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21979813

RESUMEN

In fission yeast, meiotic mono-orientation of sister kinetochores is established by cohesion at the core centromere, which is established by a meiotic cohesin complex and the kinetochore protein Moa1. The cohesin subunit Psm3 is acetylated by Eso1 and deacetylated by Clr6. We show that in meiosis, Eso1 is required for establishing core centromere cohesion during S phase, whereas Moa1 is required for maintaining this cohesion after S phase. The clr6-1 mutation suppresses the mono-orientation defect of moa1Δ cells, although the Clr6 target for this suppression is not Psm3. Thus, several acetylations are crucial for establishing and maintaining core centromere cohesion.


Asunto(s)
Meiosis , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Acetilación , Replicación del ADN , Profase Meiótica I , Modelos Biológicos , Mutación/genética , Subunidades de Proteína/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
Dev Cell ; 21(3): 534-45, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21920317

RESUMEN

During meiosis I, kinetochores of sister chromatids are juxtaposed or fused and mono-orient, while homologous chromosomes that are paired by chiasmata (bivalents) have to biorient. In the absence of chiasmata, biorientation of sister chromatids (univalents), which carries a risk of aneuploidy, has been occasionally detected in several species, including humans. We show in fission yeast that biorientation of fused sister kinetochores predominates during early prometaphase I. Without chiasmata, this undesirable biorientation of univalents persists and eventually evades the spindle assembly checkpoint, provoking abnormal anaphase. When univalents are connected by chiasmata or by an artificial tether, this erroneous attachment is converted to monopolar attachment and stabilized. This stabilization is apparently achieved by a chromosome configuration that brings kinetochores to the outer edge of the bivalent, while bringing Aurora B, a destabilizer of kinetochore-microtubule attachment, inward. Our results elucidate how chiasmata favor biorientation of bivalents over that of univalents at meiosis I.


Asunto(s)
Segregación Cromosómica , Meiosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Intercambio de Cromátides Hermanas , Aurora Quinasas , Cinetocoros/enzimología , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA