Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(5): 2132-2147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523242

RESUMEN

Elucidating the mechanisms regulating nitrogen (N) deficiency responses in plants is of great agricultural importance. Previous studies revealed that decreased expression of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) transcriptional repressor genes upon N deficiency is involved in N deficiency-inducible gene expression in Arabidopsis thaliana. However, our knowledge of the mechanisms controlling N deficiency-induced changes in gene expression is still limited. Through the identification of Dof1.7 as a direct target of NIGT1 repressors and a novel N deficiency response-related transcriptional activator gene, we here show that NIGT1 and Dof1.7 transcription factors (TFs) differentially regulate N deficiency-inducible expression of three high-affinity nitrate transporter genes, NRT2.1, NRT2.4, and NRT2.5, which are responsible for most of the soil nitrate uptake activity of Arabidopsis plants under N-deficient conditions. Unlike NIGT1 repressors, which directly suppress NRT2.1, NRT2.4, and NRT2.5 under N-sufficient conditions, Dof1.7 directly activated only NRT2.5 but indirectly and moderately activated NRT2.1 and NRT2.4 under N-deficient conditions, probably by indirectly decreasing NIGT1 expression. Thus, Dof1.7 converted passive transcriptional activation into active and potent transcriptional activation, further differentially enhancing the expression of NRT2 genes. These findings clarify the mechanism underlying different expression patterns of NRT2 genes upon N deficiency, suggesting that time-dependent multilayered transcriptional regulation generates complicated expression patterns of N deficiency-inducible genes.


Asunto(s)
Proteínas de Transporte de Anión , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Transportadores de Nitrato , Nitrógeno , Factores de Transcripción , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Regiones Promotoras Genéticas/genética , Unión Proteica , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética
3.
Plant J ; 116(1): 251-268, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37382898

RESUMEN

Senescence is a highly regulated process driven by developmental age and environmental factors. Although leaf senescence is accelerated by nitrogen (N) deficiency, the underlying physiological and molecular mechanisms are largely unknown. Here, we reveal that BBX14, a previously uncharacterized BBX-type transcription factor in Arabidopsis, is crucial for N starvation-induced leaf senescence. We find that inhibiting BBX14 by artificial miRNA (amiRNA) accelerates senescence during N starvation and in darkness, while BBX14 overexpression (BBX14-OX) delays it, identifying BBX14 as a negative regulator of N starvation- and dark-induced senescence. During N starvation, nitrate and amino acids like glutamic acid, glutamine, aspartic acid, and asparagine were highly retained in BBX14-OX leaves compared to the wild type. Transcriptome analysis showed a large number of senescence-associated genes (SAGs) to be differentially expressed between BBX14-OX and wild-type plants, including ETHYLENE INSENSITIVE3 (EIN3) which regulates N signaling and leaf senescence. Chromatin immunoprecipitation (ChIP) showed that BBX14 directly regulates EIN3 transcription. Furthermore, we revealed the upstream transcriptional cascade of BBX14. By yeast one-hybrid screen and ChIP, we found that MYB44, a stress-responsive MYB transcription factor, directly binds to the promoter of BBX14 and activates its expression. In addition, Phytochrome Interacting Factor 4 (PIF4) binds to the promoter of BBX14 to repress BBX14 transcription. Thus, BBX14 functions as a negative regulator of N starvation-induced senescence through EIN3 and is directly regulated by PIF4 and MYB44.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo
4.
Curr Biol ; 32(24): 5344-5353.e6, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36332616

RESUMEN

In plants, nitrate is the dominant nitrogen (N) source and a critical nutrient signal regulating various physiological and developmental processes.1,2,3,4 Nitrate-responsive gene regulatory networks are widely believed to control growth, development, and life cycle in addition to N acquisition and utilization,1,2,3,4 and NIN-LIKE PROTEIN (NLP) transcriptional activators have been identified as the master regulators governing the networks.5,6,7 However, it remains to be elucidated how nitrate signaling regulates respective physiological and developmental processes. Here, we have identified a new nitrate-activated transcriptional cascade involved in chloroplast development and the maintenance of chloroplast function in Arabidopsis. This cascade consisting of NLP7 and two homeodomain-leucine zipper (HD-Zip) class I transcription factors, HOMEOBOX PROTEIN52 (HB52) and HB54,8,9 was responsible for nitrate- and light-dependent expression of VAR2 encoding the FtsH2 subunit of the chloroplast FtsH protease involved in the quality control of photodamaged thylakoid membrane proteins.10,11 Consistently, the nitrate-activated NLP7-HB52/54-VAR2 pathway underpinned photosynthetic light energy utilization, especially in high light environments. Furthermore, genetically enhancing the NLP7-HB52/54-VAR2 pathway resulted in improved light energy utilization under high light and low N conditions, a superior agronomic trait. These findings shed light on a new role of nitrate signaling and a novel mechanism for integrating information on N nutrient and light environments, providing a hint for enhancing the light energy utilization of plants in low N environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nitratos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Front Plant Sci ; 13: 1013304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212285

RESUMEN

Nitrogen (N), a macronutrient, is often a limiting factor in plant growth, development, and productivity. To adapt to N-deficient environments, plants have developed elaborate N starvation responses. Under N-deficient conditions, older leaves exhibit yellowing, owing to the degradation of proteins and chlorophyll pigments in chloroplasts and subsequent N remobilization from older leaves to younger leaves and developing organs to sustain plant growth and productivity. In recent years, numerous studies have been conducted on N starvation-induced leaf senescence as one of the representative plant responses to N deficiency, revealing that leaf senescence induced by N deficiency is highly complex and intricately regulated at different levels, including transcriptional, post-transcriptional, post-translational and metabolic levels, by multiple genes and proteins. This review summarizes the current knowledge of the molecular mechanisms associated with N starvation-induced leaf senescence.

6.
J Exp Bot ; 73(13): 4323-4337, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35605260

RESUMEN

The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.


Asunto(s)
Chlorophyta , Viridiplantae , Biología , Chlorophyta/genética , Evolución Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Viridiplantae/genética , Viridiplantae/metabolismo
7.
Commun Biol ; 5(1): 432, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534536

RESUMEN

Nitrate is a nutrient signal that regulates growth and development through NLP transcription factors in plants. Here we identify the L-aspartate oxidase gene (AO) necessary for de novo NAD+ biosynthesis as an NLP target in Arabidopsis. We investigated the physiological significance of nitrate-induced AO expression by expressing AO under the control of the mutant AO promoter lacking the NLP-binding site in the ao mutant. Despite morphological changes and severe reductions in fresh weight, the loss of nitrate-induced AO expression resulted in minimum effects on NAD(H) and NADP(H) contents, suggesting compensation of decreased de novo NAD+ biosynthesis by reducing the growth rate. Furthermore, metabolite profiling and transcriptome analysis revealed that the loss of nitrate-induced AO expression causes pronounced impacts on contents of TCA cycle- and urea cycle-related metabolites, gene expression profile, and their modifications in response to changes in the nitrogen nutrient condition. These results suggest that proper maintenance of metabolic balance requires the coordinated regulation of multiple metabolic pathways by NLP-mediated nitrate signaling in plants.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Ácido Aspártico/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , NAD/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Nutrientes
8.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804852

RESUMEN

Light is the primary regulator of various biological processes during the plant life cycle. Although plants utilize photosynthetically active radiation to generate chemical energy, they possess several photoreceptors that perceive light of specific wavelengths and then induce wavelength-specific responses. Light is also one of the key determinants of the initiation of leaf senescence, the last stage of leaf development. As the leaf photosynthetic activity decreases during the senescence phase, chloroplasts generate a variety of light-mediated retrograde signals to alter the expression of nuclear genes. On the other hand, phytochrome B (phyB)-mediated red-light signaling inhibits the initiation of leaf senescence by repressing the phytochrome interacting factor (PIF)-mediated transcriptional regulatory network involved in leaf senescence. In recent years, significant progress has been made in the field of leaf senescence to elucidate the role of light in the regulation of nuclear gene expression at the molecular level during the senescence phase. This review presents a summary of the current knowledge of the molecular mechanisms underlying light-mediated regulation of leaf senescence.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Luz Solar , Etiolado , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
Commun Biol ; 4(1): 256, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637855

RESUMEN

Identification of genes and their alleles capable of improving plant growth under low nitrogen (N) conditions is key for developing sustainable agriculture. Here, we show that a genome-wide association study using Arabidopsis thaliana accessions suggested an association between different magnitudes of N deficiency responses and diversity in NRT1.1/NPF6.3 that encodes a dual-affinity nitrate transporter involved in nitrate uptake by roots. Various analyses using accessions exhibiting reduced N deficiency responses revealed that enhanced NRT1.1 expression in shoots rather than in roots is responsible for better growth of Arabidopsis seedlings under N deficient conditions. Furthermore, polymorphisms that increased NRT1.1 promoter activity were identified in the NRT1.1 promoter sequences of the accessions analyzed. Hence, our data indicated that polymorphism-dependent activation of the NRT1.1 promoter in shoots could serve as a tool in molecular breeding programs for improving plant growth in low N environments.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Arabidopsis/metabolismo , Nitrógeno/deficiencia , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Polimorfismo Genético , Regiones Promotoras Genéticas , Regulación hacia Arriba
10.
Plant Cell Physiol ; 62(4): 573-581, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33508134

RESUMEN

Homeostasis of phosphorus (P), an essential macronutrient, is vital for plant growth under diverse environmental conditions. Although plants acquire P from the soil as inorganic phosphate (Pi), its availability is generally limited. Therefore, plants employ mechanisms involving various Pi transporters that facilitate efficient Pi uptake against a steep concentration gradient across the plant-soil interface. Among the different types of Pi transporters in plants, some members of the PHOSPHATE TRANSPORTER 1 (PHT1) family, present in the plasma membrane of root epidermal cells and root hairs, are chiefly responsible for Pi uptake from the rhizosphere. Therefore, accurate regulation of PHT1 expression is crucial for the maintenance of P homeostasis. Previous investigations positioned the Pi-dependent posttranslational regulation of PHOSPHATE STARVATION RESPONSE 1 (PHR1) transcription factor activity at the center of the regulatory mechanism controlling PHT1 expression and P homeostasis; however, recent studies indicate that several other factors also regulate the expression of PHT1 to modulate P acquisition and sustain P homeostasis against environmental fluctuations. Together with PHR1, several transcription factors that mediate the availability of other nutrients (such as nitrogen and zinc), light, and stress signals form an intricate transcriptional network to maintain P homeostasis under highly diverse environments. In this review, we summarize this intricate transcriptional network for the maintenance of P homeostasis under different environmental conditions, with a main focus on the mechanisms identified in Arabidopsis.


Asunto(s)
Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Homeostasis , Luz , Nitrógeno/metabolismo , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Fosfatos/farmacocinética , Proteínas de Plantas/genética , Salinidad , Suelo/química , Zinc/metabolismo
11.
PLoS Genet ; 16(11): e1009197, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137118

RESUMEN

Fine-tuning of nutrient uptake and response is indispensable for maintenance of nutrient homeostasis in plants, but the details of underlying mechanisms remain to be elucidated. NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) family proteins are plant-specific transcriptional repressors that function as an important hub in the nutrient signaling network associated with the acquisition and use of nitrogen and phosphorus. Here, by yeast two-hybrid assays, bimolecular fluorescence complementation assays, and biochemical analysis with recombinant proteins, we show that Arabidopsis NIGT1 family proteins form a dimer via the interaction mediated by a coiled-coil domain (CCD) in their N-terminal regions. Electrophoretic mobility shift assays defined that the NIGT1 dimer binds to two different motifs, 5'-GAATATTC-3' and 5'-GATTC-N38-GAATC-3', in target gene promoters. Unlike the dimer of wild-type NIGT1 family proteins, a mutant variant that could not dimerize due to amino acid substitutions within the CCD had lower specificity and affinity to DNA, thereby losing the ability to precisely regulate the expression of target genes. Thus, expressing the wild-type and mutant NIGT1 proteins in the nigt1 quadruple mutant differently modified NIGT1-regulated gene expression and responses towards nitrate and phosphate. These results suggest that the CCD-mediated dimerization confers dual mode DNA recognition to NIGT1 family proteins, which is necessary to make proper controls of their target genes and nutrient responses. Intriguingly, two 5'-GATTC-3' sequences are present in face-to-face orientation within the 5'-GATTC-N38-GAATC-3' sequence or its complementary one, while two 5'-ATTC-3' sequences are present in back-to-back orientation within the 5'-GAATATTC-3' or its complementary one. This finding suggests a unique mode of DNA binding by NIGT1 family proteins and may provide a hint as to why target sequences for some transcription factors cannot be clearly determined.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Nutrientes/metabolismo , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , ADN/genética , ADN/metabolismo , Redes y Vías Metabólicas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Multimerización de Proteína/fisiología
13.
Front Plant Sci ; 11: 1096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765572

RESUMEN

Leaf senescence is the final stage of leaf development and an important step that relocates nutrients for grain filling in cereal crops. Senescence occurs in an age-dependent manner and under unfavorable environmental conditions such as deep shade, water deficit, and high salinity stresses. Although many transcription factors that modulate leaf senescence have been identified, the mechanisms that regulate leaf senescence in response to environmental conditions remain elusive. Here, we show that rice (Oryza sativa) ETHYLENE RESPONSE FACTOR 101 (OsERF101) promotes the onset and progression of leaf senescence. OsERF101 encodes a predicted transcription factor and OsERF101 transcript levels rapidly increased in rice leaves during dark-induced senescence (DIS), indicating that OsERF101 is a senescence-associated transcription factor. Compared with wild type, the oserf101 T-DNA knockout mutant showed delayed leaf yellowing and higher chlorophyll contents during DIS and natural senescence. Consistent with its delayed-yellowing phenotype, the oserf101 mutant exhibited downregulation of genes involved in chlorophyll degradation, including rice NAM, ATAF1/2, and CUC2 (OsNAP), STAY-GREEN (SGR), NON-YELLOW COLORING 1 (NYC1), and NYC3 during DIS. After methyl jasmonate treatment to induce rapid leaf de-greening, the oserf101 leaves retained more chlorophyll compared with wild type, indicating that OsERF101 is involved in promoting jasmonic acid (JA)-induced leaf senescence. Consistent with the involvement of JA, the expression of the JA signaling genes OsMYC2/JA INSENSITIVE 1 (OsJAI1) and CORONATINE INSENSITIVE 1a (OsCOI1a), was downregulated in the oserf101 leaves during DIS. Transient transactivation and chromatin immunoprecipitation assays revealed that OsERF101 directly binds to the promoter regions of OsNAP and OsMYC2, which activate genes involved in chlorophyll degradation and JA signaling-mediated leaf senescence. These results demonstrate that OsERF101 promotes the onset and progression of leaf senescence through a JA-mediated signaling pathway.

14.
Plant Cell ; 32(3): 630-649, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31911455

RESUMEN

In most plants, abscisic acid (ABA) induces premature leaf senescence; however, the mechanisms of ABA signaling during leaf senescence remain largely unknown. Here, we show that the rice (Oryza sativa) NAM/ATAF1/2/CUC2 (NAC) transcription factor ONAC054 plays an important role in ABA-induced leaf senescence. The onac054 knockout mutants maintained green leaves, while ONAC054-overexpressing lines showed early leaf yellowing under dark- and ABA-induced senescence conditions. Genome-wide microarray analysis showed that ABA signaling-associated genes, including ABA INSENSITIVE5 (OsABI5) and senescence-associated genes, including STAY-GREEN and NON-YELLOW COLORING1 (NYC1), were significantly down-regulated in onac054 mutants. Chromatin immunoprecipitation and protoplast transient assays showed that ONAC054 directly activates OsABI5 and NYC1 by binding to the mitochondrial dysfunction motif in their promoters. ONAC054 activity is regulated by proteolytic processing of the C-terminal transmembrane domain (TMD). We found that nuclear import of ONAC054 requires cleavage of the putative C-terminal TMD. Furthermore, the ONAC054 transcript (termed ONAC054α) has an alternatively spliced form (ONAC054ß), with seven nucleotides inserted between intron 5 and exon 6, truncating ONAC054α protein at a premature stop codon. ONAC054ß lacks the TMD and thus localizes to the nucleus. These findings demonstrate that the activity of ONAC054, which is important for ABA-induced leaf senescence in rice, is precisely controlled by multilayered regulatory processes.


Asunto(s)
Ácido Abscísico/farmacología , Membrana Celular/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Mutación/genética , Oryza/efectos de los fármacos , Oryza/ultraestructura , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Plant Cell ; 32(1): 242-262, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31641025

RESUMEN

DNA binding-with-one-finger (Dof) proteins are plant-specific transcription factors closely associated with a variety of physiological processes. Here, we show that the Dof protein family in Arabidopsis (Arabidopsis thaliana) functions in leaf senescence. Disruption of Dof2 1, a jasmonate (JA)-inducible gene, led to a marked reduction in promotion of leaf senescence and inhibition of root development as well as dark-induced and age-dependent leaf senescence, while overexpression of Dof2 1 promoted these processes. Additionally, the dof2 1 knockout mutant showed almost no change in the transcriptome in the absence of JA; in the presence of JA, expression of many senescence-associated genes, including MYC2, which encodes a central regulator of JA responses, was induced to a lesser extent in the dof2 1 mutant than in the wild type. Furthermore, direct activation of the MYC2 promoter by Dof2.1, along with the results of epistasis analysis, indicated that Dof2.1 enhances leaf senescence mainly by promoting MYC2 expression. Interestingly, MYC2 was also identified as a transcriptional activator responsible for JA-inducible expression of Dof2 1 Based on these results, we propose that Dof2.1 acts as an enhancer of JA-induced leaf senescence through the MYC2-Dof2.1-MYC2 feedforward transcriptional loop.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Factores Generales de Transcripción/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Unión Proteica , Transcriptoma
16.
BMB Rep ; 52(11): 653-658, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31072449

RESUMEN

MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the rapid responses to unfavorable environmental conditions. We recently reported the isolation and characterization of a rice (Oryza sativa) MYB TF, OsMYB102, which is involved in the regulation of leaf senescence by downregulating abscisic acid (ABA) biosynthesis and the downstream signaling response. Based on the similarities of their sequences and expression patterns, OsMYB102 appears to be a homolog of the Arabidopsis thaliana AtMYB44 TF. Since AtMYB44 is a key regulator of leaf senescence and abiotic stress responses, it is important to examine whether AtMYB44 homologs in other plants also act similarly. Here, we generated transgenic Arabidopsis plants expressing OsMYB102 (OsMYB102-OX). The OsMYB102-OX plants showed a delayed senescence phenotype during dark incubation and were more susceptible to salt and drought stresses, considerably similar to Arabidopsis plants overexpressing AtMYB44. Real-time quantitative PCR (RT-qPCR) revealed that, in addition to known senescence-associated genes, genes encoding the ABA catabolic enzymes AtCYP707A3 and AtCYP707A4 were also significantly upregulated in OsMYB102- OX, leading to a significant decrease in ABA accumulation. Furthermore, protoplast transient expression and chromatin immunoprecipitation assays revealed that OsMYB102 directly activated AtCYP707A3 expression. Based on our findings, it is probable that the regulatory functions of AtMYB44 homologs in plants are highly conserved and they have vital roles in leaf senescence and the abiotic stress responses. [BMB Reports 2019; 52(11): 653-658].


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Oryza/genética , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Envejecimiento/genética , Proteínas de Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Transducción de Señal/genética , Factores de Transcripción/genética
17.
J Exp Bot ; 70(10): 2699-2715, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30825376

RESUMEN

MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the responses to several abiotic stresses. In rice (Oryza sativa), the roles of MYB-related TFs in leaf senescence are not well documented. Here, we examined rice MYB TF gene OsMYB102 and found that an OsMYB102 T-DNA activation-tagged line (termed osmyb102-D), which constitutively expresses OsMYB102 under the control of four tandem repeats of the 35S promoter, and OsMYB102-overexpressing transgenic lines (35S:OsMYB102 and 35S:GFP-OsMYB102) maintain green leaves much longer than the wild-type under natural, dark-induced, and abscisic acid (ABA)-induced senescence conditions. Moreover, an osmyb102 knockout mutant showed an accelerated senescence phenotype under dark-induced and ABA-induced leaf senescence conditions. Microarray analysis showed that a variety of senescence-associated genes (SAGs) were down-regulated in the osmyb102-D line. Further studies demonstrated that overexpression of OsMYB102 controls the expression of SAGs, including genes associated with ABA degradation and ABA signaling (OsABF4, OsNAP, and OsCYP707A6), under dark-induced senescence conditions. OsMYB102 inhibits ABA accumulation by directly activating the transcription of OsCYP707A6, which encodes the ABA catabolic enzyme ABSCISIC ACID 8'-HYDROXYLASE. OsMYB102 also indirectly represses ABA-responsive genes, such as OsABF4 and OsNAP. Collectively, these results demonstrate that OsMYB102 plays a critical role in leaf senescence by down-regulating ABA accumulation and ABA signaling responses.


Asunto(s)
Ácido Abscísico/metabolismo , Oryza/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/metabolismo
18.
Nat Plants ; 4(12): 1089-1101, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518831

RESUMEN

Phosphorus (P) is a key macronutrient whose availability has a profound effect on plant growth and productivity. The understanding of the mechanism underlying P availability-responsive P acquisition has expanded largely in the past decade; however, effects of other environmental factors on P acquisition and utilization remain elusive. Here, by imaging natural variation in phosphate uptake in 200 natural accessions of Arabidopsis, we identify two accessions with low phosphate uptake activity, Lm-2 and CSHL-5. In these accessions, natural variants of phytochrome B were found to cause both decreased light sensitivity and lower phosphate uptake. Furthermore, we also found that expression levels of phosphate starvation-responsive genes are directly modulated by phytochrome interacting factors (PIF) PIF4/PIF5 and HY5 transcription factors whose activity is under the control of phytochromes. These findings disclose a new molecular mechanism underlying red-light-induced activation of phosphate uptake, which is responsible for different activity for P acquisition in some natural accessions of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Nucleares/metabolismo , Fósforo/metabolismo , Fitocromo B/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Proteínas Nucleares/genética , Fosfatos/metabolismo , Fitocromo B/genética , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Transducción de Señal/efectos de la radiación
19.
Nat Commun ; 9(1): 1376, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636481

RESUMEN

Nitrate is a nutrient signal that triggers complex regulation of transcriptional networks to modulate nutrient-dependent growth and development in plants. This includes time- and nitrate concentration-dependent regulation of nitrate-related gene expression. However, the underlying mechanisms remain poorly understood. Here we identify NIGT1 transcriptional repressors as negative regulators of the Arabidopsis NRT2.1 nitrate transporter gene, and show antagonistic regulation by NLP primary transcription factors for nitrate signalling and the NLP-NIGT1 transcriptional cascade-mediated repression. This antagonistic regulation provides a resolution to the complexity of nitrate-induced transcriptional regulations. Genome-wide analysis reveals that this mechanism is applicable to NRT2.1 and other genes involved in nitrate assimilation, hormone biosynthesis and transcription. Furthermore, the PHR1 master regulator of the phosphorus-starvation response also directly promotes expression of NIGT1 family genes, leading to reductions in nitrate uptake. NIGT1 repressors thus act in two transcriptional cascades, forming a direct link between phosphorus and nitrogen nutritional regulation.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fósforo/deficiencia , Transcripción Genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Luciferasas/genética , Luciferasas/metabolismo , Nitratos/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Nat Commun ; 9(1): 553, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396394

RESUMEN

The previously published version of this Article contained errors in Figure 5. In panel c, the second and fourth blot images were incorrectly labeled 'α-Myc' and should have been labelled 'α-HA'. These errors have been corrected in both the PDF and HTML versions of the Article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA