Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 9081, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899429

RESUMEN

White adipose tissue (eWAT) plays a crucial role in preventing metabolic syndrome. We aimed to investigate WAT distribution and gene expression and lipidomic profiles in epididymal WAT (eWAT) in diet-induced obese mice, reflecting a Western-style diet of humans to elucidate the bioactive properties of the dietary antioxidant curcumin in preventing lifestyle-related diseases. For 16 weeks, we fed C57BL/6J mice with a control diet, a high-fat, high-sucrose and high-cholesterol Western diet or Western diet supplemented with 0.1% (w/w) curcumin. Although the dietary intake of curcumin did not affect eWAT weight or plasma lipid levels, it reduced lipid peroxidation markers' levels in eWAT. Curcumin accumulated in eWAT and changed gene expressions related to eukaryotic translation initiation factor 2 (eIF2) signalling. Curcumin suppressed eIF2α phosphorylation, which is induced by endoplasmic reticulum (ER) stress, macrophage accumulation and nuclear factor-κB (NF-κB) p65 and leptin expression, whereas it's anti-inflammatory effect was inadequate to decrease TNF-α and IFN-γ levels. Lipidomic and gene expression analysis revealed that curcumin decreased some diacylglycerols (DAGs) and DAG-derived glycerophospholipids levels by suppressing the glycerol-3-phosphate acyltransferase 1 and adipose triglyceride lipase expression, which are associated with lipogenesis and lipolysis, respectively. Presumably, these intertwined effects contribute to metabolic syndrome prevention by dietary modification.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Curcumina/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Obesidad/metabolismo , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Curcumina/administración & dosificación , Curcumina/metabolismo , Dieta Alta en Grasa/efectos adversos , Factor 2 Eucariótico de Iniciación/genética , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Transducción de Señal/efectos de los fármacos
4.
Metabolism ; 65(5): 714-727, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27085778

RESUMEN

BACKGROUND: The circadian clock regulates various physiological and behavioral rhythms such as feeding and locomotor activity. Feeding at unusual times of the day (inactive phase) is thought to be associated with obesity and metabolic disorders in experimental animals and in humans. OBJECTIVE: The present study aimed to determine the underlying mechanisms through which time-of-day-dependent feeding influences metabolic homeostasis. METHODS: We compared food consumption, wheel-running activity, core body temperature, hormonal and metabolic variables in blood, lipid accumulation in the liver, circadian expression of clock and metabolic genes in peripheral tissues, and body weight gain between mice fed only during the sleep phase (DF, daytime feeding) and those fed only during the active phase (NF, nighttime feeding). All mice were fed with the same high-fat high-sucrose diet throughout the experiment. To the best of our knowledge, this is the first study to examine the metabolic effects of time-imposed restricted feeding (RF) in mice with free access to a running wheel. RESULTS: After one week of RF, DF mice gained more weight and developed hyperphagia, higher feed efficiency and more adiposity than NF mice. The daily amount of running on the wheel was rapidly and obviously reduced by DF, which might have been the result of time-of-day-dependent hypothermia. The amount of daily food consumption and hypothalamic mRNA expression of orexigenic neuropeptide Y and agouti-related protein were significantly higher in DF, than in NF mice, although levels of plasma leptin that fluctuate in an RF-dependent circadian manner, were significantly higher in DF mice. These findings suggested that the DF induced leptin resistance. The circadian phases of plasma insulin and ghrelin were synchronized to RF, although the corticosterone phase was unaffected. Peak levels of plasma insulin were remarkably higher in DF mice, although HOMA-IR was identical between the two groups. Significantly more free fatty acids, triglycerides and cholesterol accumulated in the livers of DF, than NF mice, which resulted from the increased expression of lipogenic genes such as Scd1, Acaca, and Fasn. Temporal expression of circadian clock genes became synchronized to RF in the liver but not in skeletal muscle, suggesting that uncoupling metabolic rhythms between the liver and skeletal muscle also contribute to DF-induced adiposity. CONCLUSION: Feeding at an unusual time of day (inactive phase) desynchronizes peripheral clocks and causes obesity and metabolic disorders by inducing leptin resistance, hyperphagia, physical inactivity, hepatic fat accumulation and adiposity.


Asunto(s)
Adiposidad , Conducta Animal , Relojes Circadianos , Métodos de Alimentación/efectos adversos , Hiperfagia/etiología , Enfermedades Metabólicas/etiología , Obesidad/etiología , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Regulación del Apetito , Regulación de la Temperatura Corporal , Ingestión de Energía , Metabolismo Energético , Hígado Graso/etiología , Regulación de la Expresión Génica , Hiperfagia/metabolismo , Hiperfagia/fisiopatología , Hipotálamo/metabolismo , Metabolismo de los Lípidos , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
5.
Sci Rep ; 6: 23556, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27000949

RESUMEN

Age-related hearing loss (AHL) is a common disorder associated with aging. In this study, we investigated the effect of the intake of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) on AHL in C57BL/6J mice. Measurement of the auditory brainstem response (ABR) demonstrated that female mice at 9 months of age fed a diet containing 0.05% strain H61 for 6 months maintained a significantly lower ABR threshold than control mice. The age-related loss of neurons and hair cells in the cochlea was suppressed by the intake of strain H61. Faecal analysis of bacterial flora revealed that the intake of strain H61 increased the prevalence of Lactobacillales, which is positively correlated with hearing ability in mice. Furthermore, plasma fatty acid levels were negatively correlated with hearing ability. Overall, the results supported that the intake of heat-killed strain H61 for 6 months altered the intestinal flora, affected plasma metabolite levels, including fatty acid levels, and retarded AHL in mice.


Asunto(s)
Envejecimiento/fisiología , Dieta , Pérdida Auditiva , Lactococcus lactis , Probióticos , Animales , Ratones , Ratones Endogámicos C57BL
6.
Mol Nutr Food Res ; 60(2): 300-12, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26499876

RESUMEN

SCOPE: To examine the effect of dietary quercetin on the function of epididymal adipose tissue (EAT) in Western diet-induced obese mice. METHODS AND RESULTS: C57BL/6J mice were fed a control diet; a Western diet high in fat, cholesterol, and sucrose; or the same Western diet containing 0.05% quercetin for 18 weeks. Supplementation with quercetin suppressed the increase in the number of macrophages, the decrease in the ratio of CD4(+) to CD8(+) T cells in EAT, and the elevation of plasma leptin and tumor necrosis factor α levels in mice fed the Western diet. Comprehensive gene expression analysis revealed that quercetin suppressed gene expression associated with the accumulation and activation of immune cells, including macrophages and lymphocytes in EAT. It also improved the expression of the oxidative stress-sensitive transcription factor NFκB, NADPH oxidases, and antioxidant enzymes. Quercetin markedly increased gene expression associated with mitochondrial oxidative phosphorylation and mitochondrial DNA content. CONCLUSION: Quercetin most likely universally suppresses the accumulation and activation of immune cells, including antiinflammatory cells, whereas it specifically increased gene expression associated with mitochondrial oxidative phosphorylation. Suppression of oxidative stress and NFκB activity likely contributed to the prevention of the accumulation and activation of immune cells and resulting chronic inflammation.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Genes Mitocondriales , Macrófagos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/inmunología , Quercetina/farmacología , Tejido Adiposo/inmunología , Animales , Antioxidantes/metabolismo , Dieta Alta en Grasa/efectos adversos , Enzimas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Masculino , Síndrome Metabólico/tratamiento farmacológico , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Quercetina/farmacocinética
7.
J Biochem ; 159(3): 331-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26494689

RESUMEN

The crystal structures of the wild type and catalytic mutant Asp-312→Gly in complex with isomaltohexaose of endo-1,6-dextranase from the thermophilic bacterium Thermoanaerobacter pseudethanolicus (TpDex), belonging to the glycoside hydrolase family 66, were determined. TpDex consists of three structural domains, a catalytic domain comprising an (ß/α)8-barrel and two ß-domains located at both N- and C-terminal ends. The isomaltohexaose-complex structure demonstrated that the isomaltohexaose molecule was bound across the catalytic site, showing that TpDex had six subsites (-4 to +2) in the catalytic cleft. Marked movement of the Trp-376 side-chain along with loop 6, which was the side wall component of the cleft at subsite +1, was observed to occupy subsite +1, indicating that it might expel the cleaved aglycone subsite after the hydrolysis reaction. Structural comparison with other mesophilic enzymes indicated that several structural features of TpDex, loop deletion, salt bridge and surface-exposed charged residue, may contribute to thermostability.


Asunto(s)
Proteínas Bacterianas/química , Dextranasa/química , Oligosacáridos/química , Thermoanaerobacter/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Dextranasa/genética , Estabilidad de Enzimas , Hidrólisis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Temperatura
8.
Biochem Biophys Res Commun ; 465(3): 556-61, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26297949

RESUMEN

Recent findings have uncovered intimate relationships between circadian clocks and energy metabolism. Epidemiological studies have shown that the frequency of obesity and metabolic disorders increases among shift-workers. Here we found that a chronic shift in light/dark (LD) cycles comprising an advance of six hours twice weekly, induced obesity in mice. Under such conditions that imitate jet lag/shift work, body weight and glucose intolerance increased, more fat accumulated in white adipose tissues and the expression profiles of metabolic genes changed in the liver compared with normal LD conditions. Mice fed at a fixed 12 h under the LD shift notably did not develop symptoms of obesity despite isocaloric intake. These results suggest that jet lag/shift work induces obesity as a result of fluctuating feeding times and it can be prevented by fixing meal times. This rodent model of obesity might serve as a useful tool for understanding why shift work induces metabolic disorders.


Asunto(s)
Relojes Circadianos , Modelos Animales de Enfermedad , Conducta Alimentaria , Síndrome Jet Lag/fisiopatología , Obesidad/prevención & control , Obesidad/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Fotoperiodo
9.
Plant Cell ; 23(1): 210-23, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21278127

RESUMEN

In the rice (Oryza sativa) endosperm, storage proteins are synthesized on the rough endoplasmic reticulum (ER), in which prolamins are sorted to protein bodies (PBs) called type-I PB (PB-I). Protein disulfide isomerase (PDI) family oxidoreductase PDIL2;3, an ortholog of human P5, contains a conserved structural disulfide in the redox-inactive thioredoxin-like (TRX) domain and was efficiently targeted to the surface of PB-I in a redox active site-dependent manner, whereas PDIL1;1, an ortholog of human PDI, was localized in the ER lumen. Complementation analyses using PDIL1;1 knockout esp2 mutant indicated that the a and a' TRX domains of PDIL1;1 exhibited similar redox activities and that PDIL2;3 was unable to perform the PDIL1;1 functions. PDIL2;3 knockdown inhibited the accumulation of Cys-rich 10-kD prolamin (crP10) in the core of PB-I. Conversely, crP10 knockdown dispersed PDIL2;3 into the ER lumen. Glutathione S-transferase-PDIL2;3 formed a stable tetramer when it was expressed in Escherichia coli, and the recombinant PDIL2;3 tetramer facilitated α-globulin(C79F) mutant protein to form nonnative intermolecular disulfide bonds in vitro. These results indicate that PDIL2;3 and PDIL1;1 are not functionally redundant in sulfhydryl oxidations of structurally diverse storage proteins and play distinct roles in PB development. We discuss PDIL2;3-dependent and PDIL2;3-independent oxidation pathways that sustain disulfide bonds of crP10 in PB-I.


Asunto(s)
Oryza/enzimología , Oxidorreductasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Retículo Endoplásmico/metabolismo , Endospermo/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Mutación , Oryza/genética , Oxidación-Reducción , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...