Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
3.
Cancers (Basel) ; 16(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39061248

RESUMEN

BACKGROUND: Targeted therapies changed the treatment of advanced oncogene-addicted non-small cell lung cancer and could also improve outcomes in resectable disease. RESULTS: The ALINA trial evaluated the clinical benefit of adjuvant alectinib compared with standard chemotherapy and met the primary endpoint with a significant increase in disease-free survival at 2 years among anaplastic lymphoma kinase positive patients with stage IB-IIIA disease; two phase II trials (ALNEO and NAUTIKA1) are currently evaluating perioperative treatment with alectinib, and the results of the case reports published to date are encouraging. CONCLUSION: In resectable anaplastic lymphoma kinase-positive lung cancer, adjuvant alectinib represents the new standard of care and could soon be used in perioperative treatment.

4.
Circulation ; 150(7): 531-543, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38939955

RESUMEN

BACKGROUND: Despite major advances in the clinical management of long QT syndrome, some patients are not fully protected by beta-blocker therapy. Mexiletine is a well-known sodium channel blocker, with proven efficacy in patients with sodium channel-mediated long QT syndrome type 3. Our aim was to evaluate the efficacy of mexiletine in long QT syndrome type 2 (LQT2) using cardiomyocytes derived from patient-specific human induced pluripotent stem cells, a transgenic LQT2 rabbit model, and patients with LQT2. METHODS: Heart rate-corrected field potential duration, a surrogate for QTc, was measured in human induced pluripotent stem cells from 2 patients with LQT2 (KCNH2-p.A561V, KCNH2-p.R366X) before and after mexiletine using a multiwell multi-electrode array system. Action potential duration at 90% repolarization (APD90) was evaluated in cardiomyocytes isolated from transgenic LQT2 rabbits (KCNH2-p.G628S) at baseline and after mexiletine application. Mexiletine was given to 96 patients with LQT2. Patients were defined as responders in the presence of a QTc shortening ≥40 ms. Antiarrhythmic efficacy of mexiletine was evaluated by a Poisson regression model. RESULTS: After acute treatment with mexiletine, human induced pluripotent stem cells from both patients with LQT2 showed a significant shortening of heart rate-corrected field potential duration compared with dimethyl sulfoxide control. In cardiomyocytes isolated from LQT2 rabbits, acute mexiletine significantly shortened APD90 by 113 ms, indicating a strong mexiletine-mediated shortening across different LQT2 model systems. Mexiletine was given to 96 patients with LQT2 either chronically (n=60) or after the acute oral drug test (n=36): 65% of the patients taking mexiletine only chronically and 75% of the patients who performed the acute oral test were responders. There was a significant correlation between basal QTc and ∆QTc during the test (r= -0.8; P<0.001). The oral drug test correctly predicted long-term effect in 93% of the patients. Mexiletine reduced the mean yearly event rate from 0.10 (95% CI, 0.07-0.14) to 0.04 (95% CI, 0.02-0.08), with an incidence rate ratio of 0.40 (95% CI, 0.16-0.84), reflecting a 60% reduction in the event rate (P=0.01). CONCLUSIONS: Mexiletine significantly shortens cardiac repolarization in LQT2 human induced pluripotent stem cells, in the LQT2 rabbit model, and in the majority of patients with LQT2. Furthermore, mexiletine showed antiarrhythmic efficacy. Mexiletine should therefore be considered a valid therapeutic option to be added to conventional therapies in higher-risk patients with LQT2.


Asunto(s)
Animales Modificados Genéticamente , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Mexiletine , Miocitos Cardíacos , Mexiletine/farmacología , Mexiletine/uso terapéutico , Animales , Humanos , Conejos , Miocitos Cardíacos/efectos de los fármacos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Femenino , Adulto , Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Adolescente , Persona de Mediana Edad , Adulto Joven , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Modelos Animales de Enfermedad , Niño , Resultado del Tratamiento
5.
Methods Mol Biol ; 2796: 211-227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856904

RESUMEN

The dynamic clamp technique has emerged as a powerful tool in the field of cardiac electrophysiology, enabling researchers to investigate the intricate dynamics of ion currents in cardiac cells. Potassium channels play a critical role in the functioning of cardiac cells and the overall electrical stability of the heart. This chapter provides a comprehensive overview of the methods and applications of dynamic clamp in the study of key potassium currents in cardiac cells. A step-by-step guide is presented, detailing the experimental setup and protocols required for implementing the dynamic clamp technique in cardiac cell studies. Special attention is given to the design and construction of a dynamic clamp setup with Real Time eXperimental Interface, configurations, and the incorporation of mathematical models to mimic ion channel behavior. The chapter's core focuses on applying dynamic clamp to elucidate the properties of various potassium channels in cardiac cells. It discusses how dynamic clamp can be used to investigate channel kinetics, voltage-dependent properties, and the impact of different potassium channel subtypes on cardiac electrophysiology. The chapter will also include examples of specific dynamic clamp experiments that studied potassium currents or their applications in cardiac cells.


Asunto(s)
Miocitos Cardíacos , Técnicas de Placa-Clamp , Canales de Potasio , Técnicas de Placa-Clamp/métodos , Canales de Potasio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Humanos , Activación del Canal Iónico , Potasio/metabolismo , Cinética
6.
Heliyon ; 10(7): e29272, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38617925

RESUMEN

Background: The molecular diagnostic and therapeutic pathway of Non-Small Cell Lung Cancer (NSCLC) stands as a successful example of precision medicine. The scarcity of material and the increasing number of biomarkers to be tested have prompted the routine application of next-generation-sequencing (NGS) techniques. Despite its undeniable advantages, NGS involves high costs that may impede its broad adoption in laboratories. This study aims to assess the detailed costs linked to the integration of NGS diagnostics in NSCLC to comprehend their financial impact. Materials and methods: The retrospective analysis encompasses 210 cases of early and advanced stages NSCLC, analyzed with NGS and collected at the IRCCS San Gerardo dei Tintori Foundation (Monza, Italy). Molecular analyses were conducted on FFPE samples, with an hotspot panel capable of detecting DNA and RNA variants in 50 clinically relevant genes. The economic analysis employed a full-cost approach, encompassing direct and indirect costs, overheads, VAT (Value Added Tax). Results: We estimate a comprehensive cost for each sample of €1048.32. This cost represents a crucial investment in terms of NSCLC patients survival, despite constituting only around 1% of the expenses incurred in their molecular diagnostic and therapeutic pathway. Conclusions: The cost comparison between NGS test and the notably higher therapeutic costs highlights that the diagnostic phase is not the limiting economic factor. Developing NGS facilities structured in pathology networks may ensure appropriate technical expertise and efficient workflows.

8.
medRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38370760

RESUMEN

Background: Long QT syndrome (LQTS) is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often owing to lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here, we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. Methods: We quantified cell-surface trafficking of 18,796 variants in KCNH2 using a Multiplexed Assay of Variant Effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping (APC). We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1,458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian LQTS penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. Results: Variant MAVE trafficking scores and APC peak tail currents were highly correlated (Spearman Rank-order ρ = 0.69). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian LQTS penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became non-significant when peak-tail current and penetrance estimates were also available. The area under the ROC for 20-year event outcomes based on patient-specific sex and QTc (AUC 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (AUC 0.86 [0.83-0.89]) or attainable APC peak tail current data (AUC 0.84 [0.81-0.88]). Conclusion: High throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale while LQTS penetrance estimates and APC peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

9.
Med Oncol ; 41(1): 13, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079079

RESUMEN

This study aimed at evaluating the efficacy of different radiotherapy (RT) fractionation regimens in managing uncomplicated painful bone metastases (BM) and identifying predictive factors for pain control. Patients with 1 to 4 symptomatic BM from any primary solid tumors and a life expectancy exceeding 3 months were included in the study and received palliative RT, with SBRT restricted in the context of oligometastatic disease or in patients with good prognosis. Pain analysis using the Brief Pain Inventory (BPI) tool was conducted at baseline, 1 and 3 months after RT. Analgesic intake was recorded as morphine-equivalent doses (OME). Pain response was assessed using the International Consensus on Palliative Radiotherapy Endpoint (ICPRE). Multivariate logistic regression analyzed patient-related, tumor-related, and treatment-related factors predicting BM pain control at 3 months post-RT. From Feb 2022 to Feb 2023, 44 patients with 65 symptomatic BM were investigated. Breast (32%) and lung (24%) tumors were the most common primary tumors. Treatment plans included 3DCRT (60%) and VMAT (40%), with a median biological effective dose for tumors (BED) of 29 Gy [14-108]. All patients completed the 3-month follow-up. Pain response rates were 62% at 1 month and 60% at 3 months. Responders had better PS ECOG scores (67%; P = 0.008) and received active systemic therapies (67%: P = 0.036). Non-responders had lower pretreatment BPI (mean: 13.7 vs. 58.2; P = 0.032), with significantly higher values after 1 month (mean: 9.1 vs. 5.3, P = 0.033). Baseline BPI (OR: 1.17; 95% CI: 1.032-1.327; P = 0.014) and BPI at 1 month (OR: 0.83; 95% CI: 0.698-0.976; P = 0.025) were independent predictors of pain response at 3 months. Our findings show that palliative RT ensured short-term pain control in patients with BM, regardless of tumor type and dose-fractionation regimen. A larger sample size and a longer follow-up could potentially identify which patients are likely to benefit most from RT, and which fractionation might be indicated for achieving a durable pain relief. A multidisciplinary approach is paramount to provide a better care to BM patients.


Asunto(s)
Neoplasias Óseas , Humanos , Estudios Prospectivos , Neoplasias Óseas/radioterapia , Neoplasias Óseas/secundario , Cuidados Paliativos , Dolor/radioterapia , Dolor/complicaciones , Manejo del Dolor
10.
Curr Oncol Rep ; 25(11): 1277-1294, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37870696

RESUMEN

PURPOSE OF REVIEW: The aim of this review is to focus on the recent advances in the molecular knowledge of small cell lung cancer (SCLC) and potential promising new treatment strategies, like targeting the DNA damage pathway, epigenetics, angiogenesis, and oncogenic drivers. RECENT FINDINGS: In the last few years, the addition of immunotherapy to chemotherapy has led to significant improvements in clinical outcomes in this complex neoplasia. Nevertheless, the prognosis remains dismal. Recently, numerous genomic alterations have been identified, and they may be useful to classify SCLC into different molecular subtypes (SCLC-A, SCLC-I, SCLC-Y, SCLC-P). SCLC accounts for 10-20% of all lung cancers, most patients have an extensive disease at the diagnosis, and it is characterized by poor prognosis. Despite the progresses in the knowledge of the disease, efficacious targeted treatments are still lacking. In the near future, the molecular characterisation of SCLC will be fundamental to find more effective treatment strategies.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inmunoterapia , Pronóstico , Terapia Molecular Dirigida
11.
Eur Heart J ; 44(35): 3357-3370, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37528649

RESUMEN

AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.


Asunto(s)
Calmodulina , Síndrome de QT Prolongado , Taquicardia Ventricular , Niño , Humanos , Calmodulina/genética , Muerte Súbita Cardíaca/etiología , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación/genética , Sistema de Registros , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
12.
Europace ; 25(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37099628

RESUMEN

AIMS: Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION: A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Animales , Humanos , Conejos , Glucocorticoides , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Arritmias Cardíacas/genética , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología
13.
Commun Biol ; 6(1): 291, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934210

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) constitute a mixed population of ventricular-, atrial-, nodal-like cells, limiting the reliability for studying chamber-specific disease mechanisms. Previous studies characterised CM phenotype based on action potential (AP) morphology, but the classification criteria were still undefined. Our aim was to use in silico models to develop an automated approach for discriminating the electrophysiological differences between hiPSC-CM. We propose the dynamic clamp (DC) technique with the injection of a specific IK1 current as a tool for deriving nine electrical biomarkers and blindly classifying differentiated CM. An unsupervised learning algorithm was applied to discriminate CM phenotypes and principal component analysis was used to visualise cell clustering. Pharmacological validation was performed by specific ion channel blocker and receptor agonist. The proposed approach improves the translational relevance of the hiPSC-CM model for studying mechanisms underlying inherited or acquired atrial arrhythmias in human CM, and for screening anti-arrhythmic agents.


Asunto(s)
Fibrilación Atrial , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , Constricción , Reproducibilidad de los Resultados
14.
Curr Opin Cardiol ; 38(3): 149-156, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789771

RESUMEN

PURPOSE OF REVIEW: To summarize and critically assess the contribution of genetics to the Long QT Syndrome (LQTS), with specific reference to the unraveling of its underlying mechanisms and to its impact on clinical practice. RECENT FINDINGS: The evolution towards our current approach to therapy for LQTS patients is examined in terms of risk stratification, gene-specific management, and assessment of the clinical impact that genetic modifiers may have in modulating the natural history of the patients. Glimpses are provided on the newest multidisciplinary approaches to study disease mechanisms, test new candidate drugs and identify precision treatments. SUMMARY: It is undeniable that genetics has revolutionized our mechanistic understanding of cardiac channelopathies. Its impact has been enormous but, curiously, the way LQTS patients are being treated today is largely the same that was used in the pregenetic era, even though management has been refined and gene-specific differences allow a more individually tailored antiarrhythmic protection. The synergy of genetic findings with modern in vitro and in silico tools may expand precision treatments; however, they will need to prove more effective than the current therapeutic approaches and equally safe.


Asunto(s)
Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Arritmias Cardíacas , Antiarrítmicos/uso terapéutico
15.
Cancers (Basel) ; 15(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36765647

RESUMEN

Lung cancer is one of the most common human malignancies and the leading cause of cancer-related death worldwide. Novel therapeutic approaches, like targeted therapies against specific molecular alterations and immunotherapy, have revolutionized in the last decade the oncological outcomes in patients affected by non-small cell lung cancer (NSCLC). The advent of immunotherapy for the treatment of NSCLC has significantly improved overall and progression-free survival, as well as the patient's quality of life in comparison to traditional chemotherapy. Currently, it is estimated that long-term survival can be achieved in more than 15% of NSCLC patients treated with immunotherapy. Therefore, the optimal duration of immunotherapy in long survivors needs to be established to avoid overtreatment, side effects, and high costs and at the same time, protect them from potential disease relapse or progression. We performed a narrative review to discuss all the aspects related to the optimal duration of immunotherapy in long survivors with NSCLC. Data regarding the duration of immunotherapy in the most impacting clinical trials were collected, along with data regarding the impact of toxicities, side effects, and costs for healthcare providers. In addition, the two-year immunotherapy scheme in patients who benefit from first-line or subsequent treatment lines are examined, and the need for biomarkers that can predict outcomes during and after immunotherapy cessation in patients affected by NSCLC are discussed.

16.
Genet Med ; 25(3): 100355, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36496179

RESUMEN

PURPOSE: The congenital Long QT Syndrome (LQTS) and Brugada Syndrome (BrS) are Mendelian autosomal dominant diseases that frequently precipitate fatal cardiac arrhythmias. Incomplete penetrance is a barrier to clinical management of heterozygotes harboring variants in the major implicated disease genes KCNQ1, KCNH2, and SCN5A. We apply and evaluate a Bayesian penetrance estimation strategy that accounts for this phenomenon. METHODS: We generated Bayesian penetrance models for KCNQ1-LQT1 and SCN5A-LQT3 using variant-specific features and clinical data from the literature, international arrhythmia genetic centers, and population controls. We analyzed the distribution of posterior penetrance estimates across 4 genotype-phenotype relationships and compared continuous estimates with ClinVar annotations. Posterior estimates were mapped onto protein structure. RESULTS: Bayesian penetrance estimates of KCNQ1-LQT1 and SCN5A-LQT3 are empirically equivalent to 10 and 5 clinically phenotype heterozygotes, respectively. Posterior penetrance estimates were bimodal for KCNQ1-LQT1 and KCNH2-LQT2, with a higher fraction of missense variants with high penetrance among KCNQ1 variants. There was a wide distribution of variant penetrance estimates among identical ClinVar categories. Structural mapping revealed heterogeneity among "hot spot" regions and featured high penetrance estimates for KCNQ1 variants in contact with calmodulin and the S6 domain. CONCLUSIONS: Bayesian penetrance estimates provide a continuous framework for variant interpretation.


Asunto(s)
Canalopatías , Canal de Potasio KCNQ1 , Humanos , Canal de Potasio KCNQ1/genética , Mutación , Penetrancia , Teorema de Bayes , Canalopatías/genética , Arritmias Cardíacas/genética
17.
Front Med (Lausanne) ; 9: 989405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530878

RESUMEN

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a high relapse rate, limited therapeutic options, and poor prognosis. The combination of chemotherapy and immune-checkpoint inhibitors brings a new therapeutic era, although the lack of predictive biomarkers of response reduces the efficacy of applying the treatment to the entire population of patients with SCLC. The lack of treatments able to bind to a specific target has always been a substantial difference to the non-small cell lung cancer (NSCLC) counterpart. Delta-like canonical Notch ligand 3 is a protein frequently overexpressed in SCLC and is therefore being explored as a potentially promising therapeutic target in high-grade neuroendocrine lung cancer. In this article, we critically review the activity and efficacy of old DLL3 inhibitors antibody-drug conjugate (ADC) and their failures through new compounds and their possible applications in clinical practice, with a focus on new molecular classification of SCLC.

18.
Sensors (Basel) ; 22(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684615

RESUMEN

The linguistic and social impact of multiculturalism can no longer be neglected in any sector, creating the urgent need of creating systems and procedures for managing and sharing cultural heritages in both supranational and multi-literate contexts. In order to achieve this goal, text sensing appears to be one of the most crucial research areas. The long-term objective of the DigitalMaktaba project, born from interdisciplinary collaboration between computer scientists, historians, librarians, engineers and linguists, is to establish procedures for the creation, management and cataloguing of archival heritage in non-Latin alphabets. In this paper, we discuss the currently ongoing design of an innovative workflow and tool in the area of text sensing, for the automatic extraction of knowledge and cataloguing of documents written in non-Latin languages (Arabic, Persian and Azerbaijani). The current prototype leverages different OCR, text processing and information extraction techniques in order to provide both a highly accurate extracted text and rich metadata content (including automatically identified cataloguing metadata), overcoming typical limitations of current state of the art approaches. The initial tests provide promising results. The paper includes a discussion of future steps (e.g., AI-based techniques further leveraging the extracted data/metadata and making the system learn from user feedback) and of the many foreseen advantages of this research, both from a technical and a broader cultural-preservation and sharing point of view.


Asunto(s)
Almacenamiento y Recuperación de la Información , Procesamiento de Lenguaje Natural , Humanos , Lenguaje
19.
Biochem Biophys Res Commun ; 572: 118-124, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364290

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) and their derivative cardiomyocytes (hiPSC-CMs) have been successfully used to study the electrical phenotype of cardiac ion channel diseases. However, strategies to mature CMs and more comprehensive systems recapitulating the heart complexity are required to advance our ability to capture adult phenotypes. METHODS: We differentiated wild-type (WT) and long QT syndrome type 1 (LQT1) hiPSCs into CMs, endothelial cells and cardiac fibroblasts. The three cell types were combined to form three-dimensional (3D) spheroids, termed "cardiac microtissues" (cMTs) and the electrophysiological properties were measured using 96-well multi-electrode arrays. RESULTS: LQT1 cMTs displayed prolonged field potential duration compared to WT controls, thus recapitulating the typical feature of LQTS. Isoprenaline caused a positive chronotropic effect on both LQT1 and WT cMTs. The 96-well multi-electrode array format proved suitable to detect electrical changes directly in the 3D tissues. CONCLUSIONS: 3D hiPSC cMTs are a scalable tool that can be used to identify LQT electrical hallmarks and drug responses. We anticipate this tool can be adopted by pharmaceutical companies to screen cardio-active compounds.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Células Cultivadas , Humanos , Miocitos Cardíacos/citología , Fenotipo
20.
Circ Genom Precis Med ; 14(4): e003289, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309407

RESUMEN

BACKGROUND: The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically predictive for the autosomal dominant long QT syndrome. METHODS: We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. RESULTS: Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. CONCLUSIONS: We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.


Asunto(s)
Canal de Potasio ERG1 , Heterocigoto , Mutación INDEL , Síndrome de QT Prolongado , Mutación Missense , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...