Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 67(15)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35767982

RESUMEN

Objective.Transitin vivodosimetry methods monitor that the dose distribution is delivered as planned. However, they have a limited ability to identify and to quantify the cause of a given disagreement, especially those caused by position errors. This paper describes a proof of concept of a simplein vivotechnique to infer a position error from a transit portal image (TPI).Approach.For a given treatment field, the impact of a position error is modeled as a perturbation of the corresponding reference (unperturbed) TPI. The perturbation model determines the patient translation, described by a shift vector, by comparing a givenin vivoTPI to the corresponding reference TPI. Patient rotations can also be determined by applying this formalism to independent regions of interest over the patient. Eight treatment plans have been delivered to an anthropomorphic phantom under a large set of couch shifts (<15 mm) and rotations (<10°) to experimentally validate this technique, which we have named Transit-Guided Radiation Therapy (TGRT).Main results.The root mean squared error (RMSE) between the determined and the true shift magnitudes was 1.0/2.4/4.9 mm for true shifts ranging between 0-5/5-10/10-15 mm, respectively. The angular accuracy of the determined shift directions was 12° ± 14°. The RMSE between the determined and the true rotations was 0.5°. The TGRT technique decoupled translations and rotations satisfactorily. In 96% of the cases, the TGRT technique decreased the existing position error. The detection threshold of the TGRT technique was around 1 mm and it was nearly independent of the tumor site, delivery technique, beam energy or patient thickness.Significance.TGRT is a promising technique that not only provides reliable determinations of the position errors without increasing the required equipment, acquisition time or patient dose, but it also adds on-line correction capabilities to existing methods currently using TPIs.


Asunto(s)
Equipos y Suministros Eléctricos , Planificación de la Radioterapia Asistida por Computador , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...