Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sci Rep ; 14(1): 12927, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839833

RESUMEN

We aimed to characterize the cognitive profile of post-acute COVID-19 syndrome (PACS) patients with cognitive complaints, exploring the influence of biological and psychological factors. Participants with confirmed SARS-CoV-2 infection and cognitive complaints ≥ 8 weeks post-acute phase were included. A comprehensive neuropsychological battery (NPS) and health questionnaires were administered at inclusion and at 1, 3 and 6 months. Blood samples were collected at each visit, MRI scan at baseline and at 6 months, and, optionally, cerebrospinal fluid. Cognitive features were analyzed in relation to clinical, neuroimaging, and biochemical markers at inclusion and follow-up. Forty-nine participants, with a mean time from symptom onset of 10.4 months, showed attention-executive function (69%) and verbal memory (39%) impairment. Apathy (64%), moderate-severe anxiety (57%), and severe fatigue (35%) were prevalent. Visual memory (8%) correlated with total gray matter (GM) and subcortical GM volume. Neuronal damage and inflammation markers were within normal limits. Over time, cognitive test scores, depression, apathy, anxiety scores, MRI indexes, and fluid biomarkers remained stable, although fewer participants (50% vs. 75.5%; p = 0.012) exhibited abnormal cognitive evaluations at follow-up. Altered attention/executive and verbal memory, common in PACS, persisted in most subjects without association with structural abnormalities, elevated cytokines, or neuronal damage markers.


Asunto(s)
Biomarcadores , COVID-19 , Cognición , Imagen por Resonancia Magnética , Neuroimagen , Pruebas Neuropsicológicas , Síndrome Post Agudo de COVID-19 , Humanos , Masculino , COVID-19/psicología , COVID-19/diagnóstico por imagen , COVID-19/complicaciones , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Neuroimagen/métodos , Adulto , Imagen por Resonancia Magnética/métodos , SARS-CoV-2/aislamiento & purificación , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/sangre , Ansiedad
2.
NPJ Parkinsons Dis ; 10(1): 69, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521776

RESUMEN

Clinical, cognitive, and atrophy characteristics depending on sex have been previously reported in Parkinson's disease (PD). However, though sex differences in cortical gray matter measures in early drug naïve patients have been described, little is known about differences in cortical thickness (CTh) as the disease advances. Our multi-site sample comprised 211 non-demented PD patients (64.45% males; mean age 65.58 ± 8.44 years old; mean disease duration 6.42 ± 5.11 years) and 86 healthy controls (50% males; mean age 65.49 ± 9.33 years old) with available T1-weighted 3 T MRI data from four international research centers. Sex differences in regional mean CTh estimations were analyzed using generalized linear models. The relation of CTh in regions showing sex differences with age, disease duration, and age of onset was examined through multiple linear regression. PD males showed thinner cortex than PD females in six frontal (bilateral caudal middle frontal, bilateral superior frontal, left precentral and right pars orbitalis), three parietal (bilateral inferior parietal and left supramarginal), and one limbic region (right posterior cingulate). In PD males, lower CTh values in nine out of ten regions were associated with longer disease duration and older age, whereas in PD females, lower CTh was associated with older age but with longer disease duration only in one region. Overall, male patients show a more widespread pattern of reduced CTh compared with female patients. Disease duration seems more relevant to explain reduced CTh in male patients, suggesting worse prognostic over time. Further studies should explore sex-specific cortical atrophy trajectories using large longitudinal multi-site data.

3.
J Neurol ; 271(3): 1428-1438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012398

RESUMEN

BACKGROUND AND OBJECTIVE: Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. METHODS: We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. RESULTS: We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. CONCLUSION: We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Masculino , Humanos , Enfermedad de Alzheimer/diagnóstico , Demencia Frontotemporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Pruebas de Estado Mental y Demencia , Biomarcadores/líquido cefalorraquídeo
4.
EJHaem ; 4(4): 1081-1088, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38024636

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy is a promising treatment option for relapsed or refractory (R/R) large B-cell lymphoma (LBCL). However, only a subset of patients will present long-term benefit. In this study, we explored the potential of PET-based radiomics to predict treatment outcomes with the aim of improving patient selection for CAR T-cell therapy. We conducted a single-center study including 93 consecutive R/R LBCL patients who received a CAR T-cell infusion from 2018 to 2021, split in training set (73 patients) and test set (20 patients). Radiomics features were extracted from baseline PET scans and clinical benefit was defined based on median progression-free survival (PFS). Cox regression models including the radiomics signature, conventional PET biomarkers and clinical variables were performed for most relevant outcomes. A radiomics signature including 4 PET-based parameters achieved an AUC = 0.73 for predicting clinical benefit in the test set, outperforming the predictive value of conventional PET biomarkers (total metabolic tumor volume [TMTV]: AUC = 0.66 and maximum standardized uptake value [SUVmax]: AUC = 0.59). A high radiomics score was also associated with longer PFS and OS in the multivariable analysis. In conclusion, the PET-based radiomics signature predicted efficacy of CAR T-cell therapy and outperformed conventional PET biomarkers in our cohort of LBCL patients.

5.
J Neurol ; 270(5): 2392-2408, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36939932

RESUMEN

Patients with post-coronavirus disease 2019 (COVID-19) conditions typically experience cognitive problems. Some studies have linked COVID-19 severity with long-term cognitive damage, while others did not observe such associations. This discrepancy can be attributed to methodological and sample variations. We aimed to clarify the relationship between COVID-19 severity and long-term cognitive outcomes and determine whether the initial symptomatology can predict long-term cognitive problems. Cognitive evaluations were performed on 109 healthy controls and 319 post-COVID individuals categorized into three groups according to the WHO clinical progression scale: severe-critical (n = 77), moderate-hospitalized (n = 73), and outpatients (n = 169). Principal component analysis was used to identify factors associated with symptoms in the acute-phase and cognitive domains. Analyses of variance and regression linear models were used to study intergroup differences and the relationship between initial symptomatology and long-term cognitive problems. The severe-critical group performed significantly worse than the control group in general cognition (Montreal Cognitive Assessment), executive function (Digit symbol, Trail Making Test B, phonetic fluency), and social cognition (Reading the Mind in the Eyes test). Five components of symptoms emerged from the principal component analysis: the "Neurologic/Pain/Dermatologic" "Digestive/Headache", "Respiratory/Fever/Fatigue/Psychiatric" and "Smell/ Taste" components were predictors of Montreal Cognitive Assessment scores; the "Neurologic/Pain/Dermatologic" component predicted attention and working memory; the "Neurologic/Pain/Dermatologic" and "Respiratory/Fever/Fatigue/Psychiatric" components predicted verbal memory, and the "Respiratory/Fever/Fatigue/Psychiatric," "Neurologic/Pain/Dermatologic," and "Digestive/Headache" components predicted executive function. Patients with severe COVID-19 exhibited persistent deficits in executive function. Several initial symptoms were predictors of long-term sequelae, indicating the role of systemic inflammation and neuroinflammation in the acute-phase symptoms of COVID-19." Study Registration: www.ClinicalTrials.gov , identifier NCT05307549 and NCT05307575.


Asunto(s)
COVID-19 , Trastornos del Conocimiento , Humanos , Función Ejecutiva , COVID-19/complicaciones , Síndrome Post Agudo de COVID-19 , Pruebas Neuropsicológicas , Trastornos del Conocimiento/diagnóstico , Cognición , Fatiga/etiología , Dolor
6.
Hum Brain Mapp ; 44(6): 2234-2244, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36661219

RESUMEN

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of dementia with partly overlapping, symptoms and brain signatures. There is a need to establish an accurate diagnosis and to obtain markers for disease tracking. We combined unsupervised and supervised machine learning to discriminate between AD and FTD using brain magnetic resonance imaging (MRI). We included baseline 3T-T1 MRI data from 339 subjects: 99 healthy controls (CTR), 153 AD and 87 FTD patients; and 2-year follow-up data from 114 subjects. We obtained subcortical gray matter volumes and cortical thickness measures using FreeSurfer. We used dimensionality reduction to obtain a single feature that was later used in a support vector machine for classification. Discrimination patterns were obtained with the contribution of each region to the single feature. Our algorithm differentiated CTR versus AD and CTR versus FTD at the cross-sectional level with 83.3% and 82.1% of accuracy. These increased up to 90.0% and 88.0% with longitudinal data. When we studied the classification between AD versus FTD we obtained an accuracy of 63.3% at the cross-sectional level and 75.0% for longitudinal data. The AD versus FTD versus CTR classification has reached an accuracy of 60.7%, and 71.3% for cross-sectional and longitudinal data respectively. Disease discrimination brain maps are in concordance with previous results obtained with classical approaches. By using a single feature, we were capable to classify CTR, AD, and FTD with good accuracy, considering the inherent overlap between diseases. Importantly, the algorithm can be used with cross-sectional and longitudinal data.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/patología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
7.
Ann Clin Transl Neurol ; 10(2): 195-203, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36525472

RESUMEN

OBJECTIVE: This research aims to study structural brain changes in patients with persistent olfactory dysfunctions after coronavirus disease 2019 (COVID-19). METHODS: COVID-19 patients were evaluated using T1-weighted and diffusion tensor imaging (DTI) on a 3T MRI scanner, 9.94 ± 3.83 months after COVID-19 diagnosis. Gray matter (GM) voxel-based morphometry was performed using FSL-VBM. Voxelwise statistical analysis of the fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity was carried out with the tract-based spatial statistics in the olfactory system. The smell identification test (UPSIT) was used to classify patients as normal olfaction or olfactory dysfunction groups. Intergroup comparisons between GM and DTI measures were computed, as well as correlations with the UPSIT scores. RESULTS: Forty-eight COVID-19 patients were included in the study. Twenty-three were classified as olfactory dysfunction, and 25 as normal olfaction. The olfactory dysfunction group had lower GM volume in a cluster involving the left amygdala, insular cortex, parahippocampal gyrus, frontal superior and inferior orbital gyri, gyrus rectus, olfactory cortex, caudate, and putamen. This group also showed higher MD values in the genu of the corpus callosum, the orbitofrontal area, the anterior thalamic radiation, and the forceps minor; and higher RD values in the anterior corona radiata, the genu of the corpus callosum, and uncinate fasciculus compared with the normal olfaction group. The UPSIT scores for the whole sample were negatively associated with both MD and RD values (p-value ≤0.05 FWE-corrected). INTERPRETATION: There is decreased GM volume and increased MD in olfactory-related regions explaining prolonged olfactory deficits in post-acute COVID-19 patients.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Olfato , Imagen de Difusión Tensora/métodos , Prueba de COVID-19 , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/etiología
8.
Eur J Neurol ; 30(3): 597-605, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463489

RESUMEN

BACKGROUND AND PURPOSE: How the APOE genotype can differentially affect cortical and subcortical memory structures in biomarker-confirmed early-onset (EOAD) and late-onset (LOAD) Alzheimer's disease (AD) was assessed. METHOD: Eighty-seven cerebrospinal fluid (CSF) biomarker-confirmed AD patients were classified according to their APOE genotype and age at onset. 28 were EOAD APOE4 carriers (+EOAD), 21 EOAD APOE4 non-carriers (-EOAD), 23 LOAD APOE4 carriers (+LOAD) and 15 LOAD APOE4 non-carriers (-LOAD). Grey matter (GM) volume differences were analyzed using voxel-based morphometry in Papez circuit regions. Multiple regression analyses were performed to determine the relation between GM volume loss and cognition. RESULTS: Significantly more mammillary body atrophy in +EOAD compared to -EOAD is reported. The medial temporal and posterior cingulate cortex showed less GM in +LOAD compared to -LOAD. Medial temporal GM volume loss was also found in +EOAD compared to -LOAD. With an exception for +EOAD, medial temporal GM was strongly associated with episodic memory in the three groups, whilst posterior cingulate cortex GM volume was more related with visuospatial abilities. Visuospatial abilities and episodic memory were also associated with the anterior thalamic nucleus in -LOAD. CONCLUSIONS: Our results show that the APOE genotype has a significant effect on GM integrity as a function of age of disease onset. Specifically, whilst LOAD APOE4 genotype is mostly associated with increased medial temporal and parietal atrophy compared to -LOAD, for EOAD APOE4 might have a more specific effect on subcortical (mammillary body) structures. The findings suggest that APOE genotype needs to be taken into account when classifying patients by age at onset.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Imagen por Resonancia Magnética/métodos , Edad de Inicio , Encéfalo/patología , Atrofia/patología , Biomarcadores
9.
Neuroimage ; 265: 119779, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462729

RESUMEN

Resting-state fMRI studies have shown that multiple functional networks, which consist of distributed brain regions that share synchronised spontaneous activity, co-exist in the brain. As these resting-state networks (RSNs) have been thought to reflect the brain's intrinsic functional organization, intersubject variability in the networks' spontaneous fluctuations may be associated with individuals' clinical, physiological, cognitive, and genetic traits. Here, we investigated resting-state fMRI data along with extensive clinical, lifestyle, and genetic data collected from 37,842 UK Biobank participants, with the object of elucidating intersubject variability in the fluctuation amplitudes of RSNs. Functional properties of the RSN amplitudes were first examined by analyzing correlations with the well-established between-network functional connectivity. It was found that a network amplitude is highly correlated with the mean strength of the functional connectivity that the network has with the other networks. Intersubject clustering analysis showed the amplitudes are most strongly correlated with age, cardiovascular factors, body composition, blood cell counts, lung function, and sex, with some differences in the correlation strengths between sensory and cognitive RSNs. Genome-wide association studies (GWASs) of RSN amplitudes identified several significant genetic variants reported in previous GWASs for their implications in sleep duration. We provide insight into key factors determining RSN amplitudes and demonstrate that intersubject variability of the amplitudes primarily originates from differences in temporal synchrony between functionally linked brain regions, rather than differences in the magnitude of raw voxelwise BOLD signal changes. This finding additionally revealed intriguing differences between sensory and cognitive RSNs with respect to sex effects on temporal synchrony and provided evidence suggesting that synchronous coactivations of functionally linked brain regions, and magnitudes of BOLD signal changes, may be related to different genetic mechanisms. These results underscore that intersubject variability of the amplitudes in health and disease need to be interpreted largely as a measure of the sum of within-network temporal synchrony and amplitudes of BOLD signals, with a dominant contribution from the former.


Asunto(s)
Mapeo Encefálico , Estudio de Asociación del Genoma Completo , Humanos , Mapeo Encefálico/métodos , Descanso/fisiología , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
10.
J Neurol ; 270(3): 1573-1586, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36443488

RESUMEN

BACKGROUND AND OBJECTIVES: The C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD) and/or motor neuron disease (MND). Corticospinal degeneration has been described in post-mortem neuropathological studies in these patients, especially in those with MND. We used MRI to analyze white matter (WM) volumes in presymptomatic and symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in predicting the onset of symptoms. METHODS: We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 suffering from FTD and 11 from MND, and 75 non-carriers from the Genetic Frontotemporal dementia Initiative (GENFI). All subjects underwent T1-MRI acquisition. We used FreeSurfer to estimate the volume proportion of WM in the brainstem regions (midbrain, pons, and medulla oblongata). We calculated group differences with ANOVA tests and performed linear and non-linear regressions to assess group-by-age interactions. RESULTS: A reduced WM ratio was found in all brainstem subregions in symptomatic carriers compared to both noncarriers and pre-symptomatic carriers. Within symptomatic carriers, MND patients presented a lower ratio in pons and medulla oblongata compared with FTD patients. No differences were found between presymptomatic carriers and non-carriers. Clinical severity was negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss than non-carriers, with MND patients showing significantly more atrophy in pons and medulla oblongata. DISCUSSION: We find consistent brainstem WM loss in C9orf72 symptomatic carriers with differences related to the clinical phenotype supporting the use of brainstem measures as neuroimaging biomarkers for disease tracking.


Asunto(s)
Demencia Frontotemporal , Enfermedad de la Neurona Motora , Sustancia Blanca , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Proteína C9orf72/genética , Enfermedad de la Neurona Motora/diagnóstico por imagen , Enfermedad de la Neurona Motora/genética , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Neuronas Motoras/patología , Mutación
11.
Front Aging Neurosci ; 14: 1029842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337708

RESUMEN

One of the most prevalent symptoms of post-COVID condition is cognitive impairment, which results in a significant degree of disability and low quality of life. In studies with large sample sizes, attention, memory, and executive function were reported as long-term cognitive symptoms. This study aims to describe cognitive dysfunction in large post-COVID condition individuals, compare objective neuropsychological performance in those post-COVID condition individuals with and without cognitive complaints, and identify short cognitive exams that can differentiate individuals with post-COVID symptoms from controls. To address these aims, the Nautilus project was started in June 2021. During the first year, we collected 428 participants' data, including 319 post-COVID and 109 healthy controls (18-65 years old) from those who underwent a comprehensive neuropsychological battery for cognitive assessment. Scores on tests assessing global cognition, learning and long-term memory, processing speed, language and executive functions were significantly worse in the post-COVID condition group than in healthy controls. Montreal Cognitive Assessment, digit symbol test, and phonetic verbal fluency were significant in the binomial logistic regression model and could effectively distinguish patients from controls with good overall sensitivity and accuracy. Neuropsychological test results did not differ between those with and without cognitive complaints. Our research suggests that patients with post-COVID conditions experience significant cognitive impairment and that routine tests like the Montreal Cognitive Assessment, digit symbol, and phonetic verbal fluency test might identify cognitive impairment. Thus, the administration of these tests would be helpful for all patients with post-COVID-19 symptoms, regardless of whether cognitive complaints are present or absent. Study registration: www.ClinicalTrials.gov, identifiers NCT05307549 and NCT05307575.

12.
Eur J Neurol ; 29(12): 3623-3632, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36005384

RESUMEN

BACKGROUND AND PURPOSE: Sex is believed to drive heterogeneity in Alzheimer's disease (AD), although evidence in early-onset AD (EOAD; <65 years) is scarce. METHODS: We included 62 EOAD patients and 44 healthy controls (HCs) with core AD cerebrospinal fluid (CSF) biomarkers, neurofilament light chain levels, neuropsychological assessment, and 3-T magnetic resonance imaging. We measured cortical thickness (CTh) and hippocampal subfield volumes (HpS) using FreeSurfer. Adjusted linear models were used to analyze sex-differences and the relationship between atrophy and cognition. RESULTS: Compared to same-sex HCs, female EOAD subjects showed greater cognitive impairment and broader atrophy burden than male EOAD subjects. In a direct female-EOAD versus male-EOAD comparison, there were slight differences in temporal CTh, with no differences in cognition or HpS. CSF tau levels were higher in female EOAD than in male EOAD subjects. Greater atrophy was associated with worse cognition in female EOAD subjects. CONCLUSIONS: At diagnosis, there are sex differences in the pattern of cognitive impairment, atrophy burden, and CSF tau in EOAD, suggesting there is an influence of sex on pathology spreading and susceptibility to the disease in EOAD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/patología , Caracteres Sexuales , Atrofia , Imagen por Resonancia Magnética/métodos , Cognición , Biomarcadores/líquido cefalorraquídeo
13.
Sci Rep ; 12(1): 14448, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002550

RESUMEN

Linear mixed effects (LME) modelling under both frequentist and Bayesian frameworks can be used to study longitudinal trajectories. We studied the performance of both frameworks on different dataset configurations using hippocampal volumes from longitudinal MRI data across groups-healthy controls (HC), mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients, including subjects that converted from MCI to AD. We started from a big database of 1250 subjects from the Alzheimer's disease neuroimaging initiative (ADNI), and we created different reduced datasets simulating real-life situations using a random-removal permutation-based approach. The number of subjects needed to differentiate groups and to detect conversion to AD was 147 and 115 respectively. The Bayesian approach allowed estimating the LME model even with very sparse databases, with high number of missing points, which was not possible with the frequentist approach. Our results indicate that the frequentist approach is computationally simpler, but it fails in modelling data with high number of missing values.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Teorema de Bayes , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
14.
Hum Brain Mapp ; 43(10): 3130-3142, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35305545

RESUMEN

Multi-site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical-based studies. A multi-site dataset of 216 Parkinson's disease (PD) patients and 87 healthy subjects (HS) was used. We performed a site GP classification using MRI data. The outcomes estimated from this classification, redefined like Weighted HARMonization PArameters (WHARMPA), were used as regressors in two different clinical studies: A PD versus HS machine learning classification using GP, and a VBM comparison (FWE-p < .05, k = 100). Same studies were also conducted using conventional Boolean site covariates, and without information about site belonging. The results from site GP classification provided high scores, balanced accuracy (BAC) was 98.39% for grey matter images. PD versus HS classification performed better when the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it (BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA provided larger and more statistically robust clusters in regions previously reported in PD than when the Boolean site covariates or no corrections were added to the model. In conclusion, WHARMPA might encode global site-effects quantitatively and allow the harmonization of data. This method is user-friendly and provides a powerful solution, without complex implementations, to clean the analyses by removing variability associated with the differences between sites.


Asunto(s)
Enfermedad de Parkinson , Sustancia Gris , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Enfermedad de Parkinson/diagnóstico por imagen
15.
J Neurol ; 269(5): 2573-2583, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34665329

RESUMEN

BACKGROUND: MRI atrophy predicts cognitive status in AD. However, this relationship has not been investigated in early-onset AD (EOAD, < 65 years) patients with a biomarker-based diagnosis. METHODS: Forty eight EOAD (MMSE ≥ 15; A + T + N +) and forty two age-matched healthy controls (HC; A - T - N -) from a prospective cohort underwent full neuropsychological assessment, 3T-MRI scan and lumbar puncture at baseline. Participants repeated the cognitive assessment annually. We used linear mixed models to investigate whether baseline cortical thickness (CTh) or subcortical volume predicts two-year cognitive outcomes in the EOAD group. RESULTS: In EOAD, hemispheric CTh and ventricular volume at baseline were associated with global cognition, language and attentional/executive functioning 2 years later (p < 0.0028). Regional CTh was related to most cognitive outcomes (p < 0.0028), except verbal/visual memory subtests. Amygdalar volume was associated with letter fluency test (p < 0.0028). Hippocampal volume did not show significant associations. CONCLUSION: Baseline hemispheric/regional CTh, ventricular and amygdalar volume, but not the hippocampus, predict two-year cognitive outcomes in EOAD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Atrofia/patología , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Hipocampo/patología , Humanos , Lenguaje , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Estudios Prospectivos
16.
Neuroimage Clin ; 32: 102804, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34474317

RESUMEN

There is evidence of longitudinal atrophy in posterior brain areas in early-onset Alzheimer's disease (EOAD; aged < 65 years), but no studies have been conducted in an EOAD cohort with fluid biomarkers characterization. We used 3T-MRI and Freesurfer 6.0 to investigate cortical and subcortical gray matter loss at two years in 12 EOAD patients (A + T + N + ) compared to 19 controls (A-T-N-) from the Hospital Clínic Barcelona cohort. We explored group differences in atrophy patterns and we correlated atrophy and baseline CSF-biomarkers levels in EOAD. We replicated the correlation analyses in 14 EOAD (A + T + N + ) and 55 late-onset AD (LOAD; aged ≥ 75 years; A + T + N + ) participants from the Alzheimer's disease Neuroimaging Initiative. We found that EOAD longitudinal atrophy spread with a posterior-to-anterior gradient and beyond hippocampus/amygdala. In EOAD, higher initial CSF NfL levels correlated with higher ventricular volumes at baseline. On the other hand, higher initial CSF Aß42 levels (within pathological range) predicted higher rates of cortical loss in EOAD. In EOAD and LOAD subjects, higher CSF t-tau values at baseline predicted higher rates of subcortical atrophy. CSF p-tau did not show any significant correlation. In conclusion, posterior cortices, hippocampus and amygdala capture EOAD atrophy from early stages. CSF Aß42 might predict cortical thinning and t-tau/NfL subcortical atrophy.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Atrofia/patología , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Proteínas tau
17.
Front Aging Neurosci ; 13: 695232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381353

RESUMEN

Previous evidence suggests that transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (l-DLPFC) can enhance episodic memory in subjects with subjective cognitive decline (SCD), known to be at risk of dementia. Our main goal was to replicate such findings in an independent sample and elucidate if baseline magnetic resonance imaging (MRI) characteristics predicted putative memory improvement. Thirty-eight participants with SCD (aged: 60-65 years) were randomly assigned to receive active (N = 19) or sham (N = 19) tDCS in a double-blind design. They underwent a verbal learning task with 15 words (DAY-1), and 24 h later (DAY-2) stimulation was applied for 15 min at 1.5 mA targeting the l-DLPFC after offering a contextual reminder. Delayed recall and recognition were measured 1 day after the stimulation session (DAY-3), and at 1-month follow-up (DAY-30). Before the experimental session, structural and functional MRI were acquired. We identified a group∗time interaction in recognition memory, being the active tDCS group able to maintain stable memory performance between DAY-3 and DAY-30. MRI results revealed that individuals with superior tDCS-induced effects on memory reconsolidation exhibited higher left temporal lobe thickness and greater intrinsic FC within the default-mode network. Present findings confirm that tDCS, through the modulation of memory reconsolidation, is capable of enhancing performance in people with self-perceived cognitive complaints. Results suggest that SCD subjects with more preserved structural and functional integrity might benefit from these interventions, promoting maintenance of cognitive function in a population at risk to develop dementia.

18.
J Neurosci Res ; 99(9): 2188-2200, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34047384

RESUMEN

The combination of transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) can provide original data to investigate age-related brain changes. We examined neural activity modulations induced by two multifocal tDCS procedures based on two distinct montages fitting two N-back task-based fMRI patterns ("compensatory" and "maintenance") related to high working memory (WM) in a previous publication (Fernández-Cabello et al. Neurobiol Aging (2016);48:23-33). We included 24 participants classified as stable or decliners according to their 4-year WM trajectories following a retrospective longitudinal approach. Then, we studied longitudinal fMRI differences between groups (stable and decliners) and across multifocal tDCS montages ("compensatory" and "maintenance") applied using a single-blind sham-controlled cross-over design. Decliners evidenced over-activation of non-related WM areas after 4 years of follow-up. Focusing on tDCS effects, among the decliner group, the "compensatory"-tDCS montage reduced the activity over the posterior regions where these subjects showed longitudinal hyperactivation. These results reinforce the notion that tDCS effects are characterized by an activity reduction and might be more noticeable in compromised systems. Importantly, the data provide novel evidence that cognitive trajectories predict tDCS effects in older adults.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/terapia , Imagen por Resonancia Magnética/tendencias , Estimulación Transcraneal de Corriente Directa/tendencias , Anciano , Disfunción Cognitiva/fisiopatología , Estudios Cruzados , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Método Simple Ciego , Estimulación Transcraneal de Corriente Directa/métodos
19.
Brain Connect ; 11(5): 380-392, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33626962

RESUMEN

Background: Probabilistic tractography, in combination with graph theory, has been used to reconstruct the structural whole-brain connectome. Threshold-free network-based statistics (TFNBS) is a useful technique to study structural connectivity in neurodegenerative disorders; however, there are no previous studies using TFNBS in Parkinson's disease (PD) with and without mild cognitive impairment (MCI). Materials and Methods: Sixty-two PD patients, 27 of whom classified as PD-MCI, and 51 healthy controls (HC) underwent diffusion-weighted 3T magnetic resonance imaging. Probabilistic tractography, using FMRIB Software Library (FSL), was used to compute the number of streamlines (NOS) between regions. NOS matrices were used to find group differences with TFNBS, and to calculate global and local measures of network integrity using graph theory. A binominal logistic regression was then used to assess the discrimination between PD with and without MCI using non-overlapping significant tracts. Tract-based spatial statistics were also performed with FSL to study changes in fractional anisotropy (FA) and mean diffusivity. Results: PD-MCI showed 37 white matter connections with reduced connectivity strength compared with HC, mainly involving temporal/occipital regions. These were able to differentiate PD-MCI from PD without MCI with an area under the curve of 83-85%. PD without MCI showed disrupted connectivity in 18 connections involving frontal/temporal regions. No significant differences were found in graph measures. Only PD-MCI showed reduced FA compared with HC. Discussion: TFNBS based on whole-brain probabilistic tractography can detect structural connectivity alterations in PD with and without MCI. Reduced structural connectivity in fronto-striatal and posterior cortico-cortical connections is associated with PD-MCI.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen
20.
Neuroimage Clin ; 29: 102540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33418170

RESUMEN

Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting an increased CTh loss associated with age and estimated proximity to symptoms onset in GRN carriers, even before the disease onset.


Asunto(s)
Adelgazamiento de la Corteza Cerebral , Demencia Frontotemporal , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Granulinas , Heterocigoto , Humanos , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Progranulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...