Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(10): 9040-9057, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936277

RESUMEN

Fundamental studies have improved understanding of molecular-level properties and behavior in surfactant-oil-water (SOW) systems at equilibrium and under nonequilibrium conditions. However, confusion persists regarding the terms "microemulsion" and "curvature" in these systems. Microemulsion refers to a single-phase system that does not contain distinct oil or water droplets but at least four different structures with globular domains of nanometer size and sometimes arbitrary shape. The significance of "curvature" in such systems is unclear. At high surfactant concentrations (typically 30 wt % or more), a single phase zone has been identified in which complex molecular arrangements may result in light scattering. As surfactant concentration decreases, the single phase is referred to as a bicontinuous microemulsion, known as the middle phase in a Winsor III triphasic system. Its structure has been described as involving simple or multiple surfactant films surrounding more or less elongated excess oil and water phase globules. In cases where the system separates into two or three phases, known as Winsor I or II systems, one of the phases, containing most of the surfactant, is also confusedly referred to as the microemulsion. In this surfactant-rich phase, the only curved objects are micellar size structures that are soluble in the system and have no real interface but rather exchange surfactant molecules with the external liquid phase at an ultrafast pace. The use of the term "curvature" in the context of these complex microemulsion systems is confusing, particularly when applied to merged nanometer-size globular or percolating domains. In this work, we discuss the terms "microemulsion" and "curvature", and the most simple four-dimensional spatiotemporal model is proposed concerning SOW equilibrated systems near the optimum formulation. This model explains the motion of surfactant molecules due to Brownian movement, which is a quick and arbitrary thermal fluctuation, and limited to a short distance. The resulting observation and behavior will be an average in time and in space, leading to a permanent change in the local microcurvature of the aggregate, thus changing the average from micelle-like to inverse micelle-like order over an extremely short time. The term "microcurvature" is used to explain the small variations of globule size and indicates a close-to-zero mean curvature of the surfactant-containing film surface shape.

2.
Molecules ; 26(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205697

RESUMEN

Soap applications for cleaning and personal care have been used for more than 4000 years, dating back to the pharaonic period, and have widely proliferated with the appearance of synthetic surfactants a century ago. Synthetic surfactants used to make macro-micro-nano-emulsions and foams are used in laundry and detergency, cosmetics and pharmaceuticals, food conditioning, emulsified paints, explosives, enhanced oil recovery, wastewater treatment, etc. The introduction of a multivariable approach such as the normalized hydrophilic-lipophilic deviation (HLD N) and of specific structures, tailored with an intramolecular extension to increase solubilization (the so-called extended surfactants), makes it possible to improve the results and performance in surfactant-oil-water systems and their applications. This article aims to present an up-to-date overview of extended surfactants. We first present an introduction regarding physicochemical formulation and its relationship with performance. The second part deals with the importance of HLD N to make a straightforward classification according to the type of surfactants and how formulation parameters can be used to understand the need for an extension of the molecule reach into the oil and water phases. Then, extended surfactant characteristics and strategies to increase performance are outlined. Finally, two specific applications, i.e., drilling fluids and crude oil dewatering, are described.

3.
Adv Colloid Interface Sci ; 276: 102099, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31931276

RESUMEN

The standard HLD (Hydrophilic-Lipophilic-Deviation) equation expressing quantitatively the deviation from the "optimum formulation" of Surfactant/Oil/Water systems is normalized and simplified into a relation including only the three more meaningful formulation variables, namely (i) the "Preferred Alkane Carbon Number" PACN which expresses the amphiphilicity of the surfactant, (ii) the "Equivalent Alkane Carbon Number" EACN which accurately reflects the hydrophobicity of the oil and (iii) the temperature which has a strong influence on ethoxylated surfactants and is thus selected as an effective, continuous and reversible scanning variable. The PACN and EACN values, as well as the "temperature-sensitivity-coefficient"τ of surfactants are determined by reviewing available data in the literature for 17 nonionic n-alkyl polyglycol ether (CiEj) surfactants and 125 well-defined oils. The key information used is the so-called "fish-tail-temperature" T* which is a unique data point in true ternary CiEj/Oil/Water fish diagrams. The PACNs of CiEj surfactants are compared with other descriptors of their amphiphilicity, namely, the cloud point, the HLB number and the PIT-slope value. The EACNs of oils are rationalized by the Effective-Packing-Parameter concept and modelled thanks to the COSMO-RS theory.

4.
Langmuir ; 34(31): 9252-9263, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29986590

RESUMEN

We have studied emulsions made with two- and three-phase oil-water-surfactant systems in which one of the phases is a microemulsion, the other phases being water or/and oil excess phases. Such systems have been extensively studied in the 1970-1980s for applications in enhanced oil recovery. It was found at that time that the emulsions became very unstable in the three-phase systems, but so far few explanations have been proposed. In the most complete one, Kabalnov and colleagues related the emulsion stability to the probability of hole nucleation in the liquid film separating two nearby emulsion drops and associated this probability to the curvature elastic energy of the surfactant layer covering drop surfaces. We propose a different explanation, linked to another type of interfacial elastic energy, associated with compression of the surfactant layers. As found long ago, the three-phase systems are found near optimum formulation (hydrophile lipophile difference, HLD = 0), where the interfacial tension exhibits a deep minimum. The determination of interfacial elastic properties in low interfacial tension systems is not straightforward. In our present work, we used a spinning drop tensiometer with an oscillating rotation velocity. We show that the interfacial compression elastic modulus and viscosity also exhibit a minimum at optimum formulation. We propose that this minimum is related to the acceleration of the surfactant exchanges between the interface, oil and water, near the optimum formulation. Furthermore, we find that the surfactant partitions close to equally between oil and water at the optimum, as in earlier studies. The interfacial tension gradients that slow the thinning of liquid films between drops are reduced by surfactant exchanges between drops and the interface, which are fast whatever the type of drop, oil or water; film thinning is therefore very rapid, and emulsions are almost as unstable as in the absence of surfactant.

5.
J Colloid Interface Sci ; 519: 27-37, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29477897

RESUMEN

When surfactants adsorb at liquid interfaces, they not only decrease the surface tension, they confer rheological properties to the interfaces. There are two types of rheological parameters associated to interfacial layers: compression and shear. The elastic response is described by a storage modulus and the dissipation by a loss modulus or equivalently a surface viscosity. Various types of instruments are available for the measurements of these coefficients, the most common being oscillating pendent drops instruments and rheometers equipped with bicones. These instruments are applicable to systems with large enough interfacial tensions, typically above a few mN/m. We use a new type of instrument based on spinning drop oscillations, allowing to extend the interfacial rheology studies to low and ultralow interfacial tension systems. We present examples of measurements with systems of high and low tension, discuss the possible artifacts and demonstrate the capability of this new technique. We emphasize that the data shown for low interfacial tensions are the first reported in the literature. The instrument is potentially interesting for instance in enhanced oil recovery or demulsification studies.

6.
J Colloid Interface Sci ; 448: 222-30, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25744856

RESUMEN

The Phase Inversion Temperature of a reference C10E4/n-Octane/Water system exhibits a quasi-linear variation versus the mole fraction of a second surfactant S2 added in the mixture. This variation was recently proposed as a classification tool to quantify the Hydrophilic-Lipophilic Balance (HLB) of commercial surfactants. The feasibility of the so-called PIT-slope method for a wide range of well-defined non-ionic and ionic surfactants is investigated. The comparison of various surfactants having the same dodecyl chain tail allows to rank the polar head hydrophilicity as: SO3Na⩾SO4Na⩾NMe3Br>E2SO3Na≈CO2Na⩾E1SO3Na⩾PhSO3Na>Isosorbide(exo)SO4Na≫IsosorbideendoSO4Na≫E8⩾NMe2O>E7>E6⩾Glucosyl>E5⩾Diglyceryl⩾E4>E3>E2≈Isosorbide(exo)>Glyceryl>Isosorbide(endo). The influence on the surfactant HLB of other structural parameters, i.e. hydrophobic chain length, unsaturation, replacement of Na(+) by K(+) counterion, and isomerism is also investigated. Finally, the method is successfully used to predict the optimal formulation of a new bio-based surfactant, 1-O-dodecyldiglycerol, when performing an oil scan at 25 °C.

7.
J Surfactants Deterg ; 16: 631-663, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23946640

RESUMEN

The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.

8.
J Colloid Interface Sci ; 403: 67-76, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23673005

RESUMEN

The phase behavior of well-defined C10E4/ester oil/water systems versus temperature was investigated. Fifteen ester oils were studied and their Equivalent Alkane Carbon Numbers (EACNs) were determined from the so-called fish-tail temperature T* of the fish diagrams obtained with an equal weight amount of oil and water (f(w)=0.5). The influence of the chemical structure of linear monoester on EACN was quantitatively rationalized in terms of ester bonds position and total carbon number, and explained by the influence of these polar oils on the "effective" packing parameter of the interfacial surfactant, which takes into account its entire physicochemical environment. In order to compare the behaviors of typical mono-, di-, and triester oils, three fish diagrams were entirely plotted with isopropyl myristate, bis (2-ethylhexyl) adipate, and glycerol trioctanoate. When the number of ester bonds increases, a more pronounced asymmetry of the three-phase body of the fish diagram with respect to T* is observed. In this case, T* is much closer to the upper limit temperature Tu than to the lower limit temperature Tl of the three-phase zone. This asymmetry is suggested to be linked to an increased solubility of the surfactant in the oil phase, which decreases the surfactant availability for the interfacial pseudo-phase. As a consequence, the asymmetry depends on the water-oil ratio, and a method is proposed to determine the fw value at which T* is located at the mean value of Tu and Tl.


Asunto(s)
Aceites/química , Aceites/clasificación , Polietilenglicoles/química , Agua/química , Ésteres , Relación Estructura-Actividad
9.
J Phys Chem B ; 113(50): 16142-50, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19928963

RESUMEN

The equilibrium phase behavior of the well-defined system tetraethyleneglycol decyl ether (C(10)E(4))/n-octane/water (SOW) at variable temperature (T) was revisited by careful analysis of the three bidimensional cuts, namely, the gamma (at constant water-oil ratio), chi (at constant surfactant concentration), and Delta (at constant temperature) plots. A straightforward methodology is reported to determine the frontiers of the triphasic (Winsor III) domain on any cut of the SOW-T phase prism. It comes from the systematic analysis of another cut, here gamma at different water-oil ratios and chi at different surfactant concentrations from the knowledge of Delta cuts at different temperatures. The method has been validated through comparison with experimental results. It enables one to show, for the first time, the evolution of a SOW system three-phase body contours with (i) water-oil ratio, (ii) surfactant concentration, and (iii) temperature. It exhibits a strong impact of the surfactant affinity for the pure oil and water phases on the shape of the phase diagrams. The systematic study of the effect of the surfactant concentration on the aspect of the chi plot sheds light on an unusual shape found at low surfactant concentration.

10.
Langmuir ; 23(10): 5286-8, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17402766

RESUMEN

Many phenomena take place during different types of emulsion inversions, particularly a change in interface curvature and drop size, which could be detected by backward light scattering. Monitoring the backscattering signal allows us to detect the emulsion inversion in three main cases, one transitional and two catastrophic types. The backscattering data could give some clue as to emulsion morphology, which is not available from conductivity measurements.

11.
Adv Colloid Interface Sci ; 123-126: 63-73, 2006 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-16792993

RESUMEN

Because their affinities for the oil and water phases vary considerably with the number of ethylene oxide units in their hydrophilic group, the ethoxylated nonionic species occurring in commercial products tend to behave in a non-collective way, with the low ethoxylation oligomers partitioning mostly in the oil phase. This results in a surfactant mixture at the interface which is more hydrophilic than the one which was introduced in the system in the first place. The pseudophase model is used to study the partitioning in Winsor III type systems, and to estimate the deviation of the interfacial mixture composition from the overall one. New results indicate that the selective partitioning into the oil phase increases when the oil phase becomes aromatic, when the total surfactant concentration decreases and when the water-to-oil ratio decreases.

12.
Langmuir ; 21(15): 6712-6, 2005 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16008379

RESUMEN

Commercial ethoxylated nonionic surfactant mixtures containing alcohol cosurfactant exhibit a three-phase behavior whose formulation strongly varies with the water/oil ratio. As a consequence, a change in water/oil ratio can result in a sequence of up to three different emulsion inversion processes, through a combination of formulation and composition effects.

13.
Talanta ; 68(2): 179-86, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18970302

RESUMEN

The sequential injection (SIA) technique was applied for the on-line preparation of an "oil in water" microemulsion and for the determination of aluminum in new and used lubricating oils by electrothermal atomic absorption spectrometry (ET AAS) with Zeeman-effect background correction. Respectively, 1.0, 0.5 and 1.0ml of surfactants mixture, sample and co-surfactant (sec-butanol) solutions were sequentially aspirated to a holding coil. The sonication and repetitive change of the flowing direction improved the stability of the different emulsion types (oil in water, water in oil and microemulsion). The emulsified zone was pumped to fill the sampling arm of the spectrometer with a sub-sample of 200mul. Then, 10mul of this sample solution were introduced by means of air displacement in the graphite tube atomizer. This sequence was timed to synchronize with the previous introduction of 15mug of Mg(NO(3))(2) (in a 10mul) by the spectrometer autosampler. The entire SIA system was controlled by a computer, independent of the spectrometer. The furnace program was carried out by employing a heating cycle in four steps: drying (two steps at 110 and 130 degrees C), pyrolisis (at 1500 degrees C), atomization (at 2400 degrees C) and cleaning (at 2400 degrees C). The calibration graph was linear from 7.7 to 120mugAll(-1). The characteristic mass (mo) was 33.2pg/0.0044s and the detection limit was 2.3mugAll(-1). The relative standard (RSD) of the method, evaluated by replicate analyses of different lubricating oil samples varied in all cases between 1.5 and 1.7%, and the recovery values found in the analysis of spiked samples ranged from 97.2 to 100.4%. The agreement between the observed and reference values obtained from two NIST Standard Certified Materials was good. The method was simple and satisfactory for determining aluminum in new and used lubricating oils.

14.
Adv Colloid Interface Sci ; 108-109: 259-72, 2004 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15072945

RESUMEN

Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

15.
Langmuir ; 20(13): 5179-81, 2004 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-15986647

RESUMEN

Winsor type I equilibrated surfactant-oil-water (SOW) systems produce o/w emulsions upon stirring. However, if the surfactant is initially dissolved in the oil phase, the attained type after inmediate emulsification is usually w/o. If the SOW system is partially equilibrated, it could result in a normal o/w emulsion, as if it were fully equilibrated. The minimum contact time for that to happen, the so-called apparent equilibration time tAPE, was previously shown (Langmuir 2002, 18, 607) to strongly depend on formulation, surfactant molecular weight, and oil viscosity. The present report shows that it depends on alcohol concentration and location in the unequilibrated system.

16.
Langmuir ; 20(6): 2134-40, 2004 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-15835662

RESUMEN

Two kinds of transitions can occur when an emulsified water-oil-ethoxylated nonionic surfactant system is cooled under constant stirring. At a water-oil ratio close to unity, a transitional inversion takes place from a water-in-oil (W/O) to an oil-in-water (O/W) morphology according to the so-called phase-inversion-temperature method. At a high water content, a multiple w/O/W emulsion changes to a simple O/W emulsion. The continuous monitoring of both the emulsion conductivity and viscosity allows the identification of several phenomena that take place during the temperature decrease. In all cases, a viscosity maximum is found on each side of the three-phase behavior temperature interval and correlates with the attainment of extremely fine emulsions, where the best compromise between a low-tension and a not-too-unstable emulsion is reached. The studied system contains Polysorbate 85, a light alkane cut oil, and a sodium chloride brine. All transitions are interpreted in the framework of the formulation-composition bidimensional map.

17.
Talanta ; 61(3): 353-61, 2003 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18969194

RESUMEN

An "oil in water" formulation was optimized to determine chromium in heavy crude oil (HCO) and bitumen-in-water emulsion (Orimulsion-400(R)) samples by transversally heated electrothermal atomic absorption spectrometry (TH-ET AAS) using Zeeman effect background correction. The optimum proportion of the oil-water mixture ratio was 7:3 v/v (70 ml of oil as the internal phase) with a non-ionic surfactant concentration (Intan-100) in the emulsion of 0.2% w/w. Chromium was determined in different crude oil samples after dilution of the emulsions 1:9 v/v with a 0.2% w/w solution of surfactant in order to further reduce the viscosity from 100 to 1.6 cP and at the same time to bring the concentration of chromium within the working range of the ET AAS technique. The calibration graph was linear from 1.7 to 100 mug Cr l(-1). The sensitivity was of 0.0069 s l mug(-1), the characteristic mass (m(o)) was of 5.7 pg per 0.0044 s and the detection limit (3sigma) was of 0.52 mug l(-1). The relative standard deviation of the method, evaluated by replicate analyses of three crude oil samples varied in all cases between 1.5 and 2.6%. Recovery studies were performed on four Venezuelan crude oils, and the average chromium recovery values varied between 95.9-104.8, 90.6-107.6, 95.6-104.0 and 98.8-103.9% for the Cerro Negro, Crudo Hamaca and Boscán crude oils and for the Orimulsión(R)-400, respectively. The results obtained in this work for the Cerro Negro, Crudo Hamaca and Boscán crude oils and for the Orimulsión(R)-400 following the proposed procedure were of 0.448+/-0.008, 0.338+/-0.004 0.524+/-0.021 and 0.174+/-0.008 mg Cr l(-1), respectively, which were in good agreement with the values obtained by a tedious recommended standard procedure (respectively: 0.470+/-0.05, 0.335+/-0.080, 0.570+/-0.021 and 0.173+/-0.009 mg Cr l(-1)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...