Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17073, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048588

RESUMEN

Catalytic degradation of Acid Orange 7 (AO7) by hydrogen peroxide in an aqueous solution has been investigated using cobalt(II) complex of 5, 10, 15, 20 Tetrakis [4-(hydroxy)phenyl] porphyrin [Co(II) TPHPP] covalently supported chitosan/Graphene Oxide nanocomposite [Co(II) TPHPP]-Cs/GO, as highly efficient and recoverable heterogeneous catalyst. The structures and properties of [Co(II) TPHPP]-Cs/GO nanocomposite were characterized by techniques such as UV-Vis, FT-IR, SEM, EDX, TEM, and XRD. The oxidation reaction was followed by recording the UV-Vis spectra of the reaction mixture with time at λmax = 485 nm. [Co(II) TPHPP]-Cs/GO nanocomposite demonstrated high catalytic activity and could decompose 94% of AO7 within 60 min. The factors that may influence the oxidation of Acid Orange 7, such as the effect of reaction temperature, pH, concentration of catalyst, Acid Orange 7, and hydrogen peroxide, have been studied. The results of total organic carbon analysis (TOC) showed 50% of dye mineralization under mild reaction conditions of AO7 (1.42 × 10-4M) with H2O2 (8 × 10-2M) in the presence of [Co(II) TPHPP]-Cs/GO nanocomposite (15 × 10-3 g/ml) and pH = 9 at 40 °C. The reuse and stability of the nanocomposite were examined and remarkably, even after six cycles of reuse, there was no significant degradation or deactivation of the recycled catalyst. Residual organic compounds in the reaction mixture were identified by using GC-MS analyses. The radical scavenging measurements and photoluminescence probing technology of disodium salt of terephthalic acid indicated the formation of the hydroxyl radical as the reactive oxygen species in the [Co(II) TPHPP]-Cs/GO nanocomposite/H2O2 system. A mechanism for the oxidation reaction has been discussed.

2.
Biomater Adv ; 160: 213863, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642516

RESUMEN

To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.


Asunto(s)
Acroleína/análogos & derivados , Antifúngicos , Benzaldehídos , Quitosano , Fusarium , Grafito , Nanocompuestos , Solanum lycopersicum , Grafito/farmacología , Grafito/química , Solanum lycopersicum/microbiología , Nanocompuestos/química , Antifúngicos/farmacología , Antifúngicos/química , Fusarium/efectos de los fármacos , Quitosano/farmacología , Quitosano/química , Benzaldehídos/farmacología , Benzaldehídos/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pythium/efectos de los fármacos , Compuestos de Anilina/farmacología , Compuestos de Anilina/química , Acroleína/farmacología , Acroleína/química
3.
Carbohydr Polym ; 282: 119111, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123746

RESUMEN

Novel bio-based nanocomposites were developed as carriers for loading and sustained-release of vanillin (Van.) and cinnamaldehyde (Cinn.) antioxidants. The composites were obtained by intercalation of chitosan (CS) into sodium montmorillonite (CS/Mt), incorporation of chitosan with polyaniline (CS/PANI) and chitosan/polyaniline/exfoliated montmorillonite (CS/PANI/Mt). The structure and morphology of composites were characterized by FTIR, XRD, SEM and TEM. The release data of Van. and Cinn. from CS and CS/Mt obeyed well zero-order equation. However, Higuchi and Korsmeyer-Peppas models fitted well the release data from CS/PANI and CS/Mt composites. Their antifungal activity was examined towards Fusarium oxysporum and Pythium debaryanum. In vitro assay, CS, Cinn., Van., CS/PANI and CS/PANI/Cinn., have a strong inhibitory effect on the linear growth of the target pathogens, even at lower concentrations. Greenhouse assay indicated that seedling treatment by the loaded CS/PANI/Cinn and CS/Mt/Cinn. reduced both disease index and disease incidence parameters of both pathogens and possessed seedlings growth promoting potential of tomato compared to untreated-infected controls.


Asunto(s)
Acroleína/análogos & derivados , Antioxidantes/administración & dosificación , Benzaldehídos/administración & dosificación , Agentes de Control Biológico/administración & dosificación , Quitosano/administración & dosificación , Fusarium/efectos de los fármacos , Nanocompuestos/administración & dosificación , Enfermedades de las Plantas/prevención & control , Pythium/efectos de los fármacos , Solanum lycopersicum/microbiología , Acroleína/administración & dosificación , Acroleína/química , Adsorción , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/química , Antioxidantes/química , Bentonita/administración & dosificación , Bentonita/química , Benzaldehídos/química , Agentes de Control Biológico/química , Quitosano/química , Liberación de Fármacos , Fusarium/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Nanocompuestos/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Pythium/crecimiento & desarrollo
4.
ACS Omega ; 6(34): 21939-21951, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34497889

RESUMEN

Poly(aniline-co-o-anthranilic acid)-chitosan/silver@silver chloride (PAAN-CS/Ag@AgCl) nanohybrids were synthesized using different ratios of Ag@AgCl through a facile one-step process. The presence of CS led to the formation of the nanohybrid structure and prevented the aggregation of the copolymer efficiently. The synthesized nanohybrids were fully characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis. (E)-N'-(Pyridin-2-ylmethylene) hydrazinecarbothiohydrazide I was prepared using thiosemicarbazide and confirmed by 1H-NMR, 13C-NMR, and FTIR analyses. Loading of the azine derivative I using various concentrations at different pH values onto the nanohybrid was followed by UV-vis spectroscopy. Langmuir and Freundlich adsorption isotherm models were used to describe the equilibrium isotherm, and the adsorption followed the Langmuir adsorption isotherm. A pseudo-second-order model was used to describe the kinetic data. A PAAN-CS/Ag@AgCl nanohybrid loaded with azine I interestingly showed efficient antimicrobial activity against Escherichia coli and Staphylococcus aureus more than the azine derivative I. The release of azine I at different pH values (2-7.4) was investigated and the kinetics of release were studied using zero-order, first-order, second-order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas equations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...