Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(38): 15859-15871, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39247960

RESUMEN

The binary boron-rich compounds α-Ir2B3-x and ß-Ir2B3-x, formerly denoted as α- and ß-Ir4B5, were synthesized via both arc melting followed by annealing at 800 °C (900 °C) and high-temperature thermal treatment of mixtures of the elements. X-ray structure analysis of α-Ir2B3-x was performed on a single crystal (space group C2/m, a = 10.5515(11) Å, b = 2.8842(3) Å, c = 6.0965(7) Å, ß = 91.121(9)°). The orthorhombic structure of ß-Ir2B3-x was confirmed by X-ray powder diffraction (space group Pnma; a = 10.7519(3) Å, b = 2.83193(7) Å, c = 6.0293(1) Å). The α-Ir2B3-x structure exhibits ordered arrangements of iridium atoms. The structure is composed of corrugated layers of boron hexagons (interlinked via external B-B bonds) alternating with two corrugated layers of iridium along the c-direction; an additional boron atom (Oc. 0.46(7)) is located between iridium layers in Ir6 trigonal prisms. The boron partial structure in ß-Ir2B3-x is composed of ribbons made up of slightly corrugated quadrilateral units running along the b-direction in the channels formed by 8 iridium atoms each. DFT calculations revealed a number of bands crossing the Fermi level, predicting metallic behaviors of the two compounds. ß-Ir2B3-x is characterized by a pseudogap around the Fermi level and a smaller eDOS of 0.6405 states per eV per f.u. at the Fermi level, as compared to the α-Ir2B3-x value of 1.405 states per eV per f.u. The calculated electron localization functions revealed strong covalent bonds between boron atoms in the core part of the B6 hexagons, metallic B-B bonds within the quadrilateral boron partial structure and mixed covalent and metallic interactions between iridium and boron atoms. Structural relationships of α-Ir2B3-x and ß-Ir2B3-x with ReB2-type structures as well as the common structural features with layered binary borides with CrB-type related structures have been discussed.

2.
Dalton Trans ; 53(1): 233-244, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38037738

RESUMEN

The title compound was obtained from elements via arc melting and its crystal structure was determined from single-crystal X-ray diffraction data (space group Im3̄, a = 10.2042(6) Å). The refinement indicated the occupancy of icosahedral 2a and cubooctahedral 8c sites solely by Sc atoms which leads to the composition Sc5Pt24B12 in contrast to the previously reported ternary stannides of Gd3Ni8Sn16 type (RE5-xM12Sn24(+x) compounds). The compound is the first representative of borides crystallizing with a site exchange variant of this stannide structure type. The structural relationships of the boride structure and filled skutterudite LaFe4P12vs. the Remeika phase of Yb3Rh4Sn13-type are discussed. Analysis of chemical bonding classifies Sc5Pt24B12 as a cage compound exhibiting the ionic interaction of cationic scandium species in the cages of anionic framework, formed by covalently bonded B and Pt atoms. Electronic structure calculations show that the electronic states of atoms centered around the cubooctahedral 8c site, i.e. Sc2 3d-, Pt2 5d- and B 2p-states dominate the density of states (DOS) at the Fermi level EF. Strong effect of spin-orbit coupling on the band structure at the gamma point has been found from density functional theory calculations. Sc5Pt24B12 exhibits superconductivity with a transition temperature of TC = 2.45 K.

3.
Inorg Chem ; 62(47): 19164-19177, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37948347

RESUMEN

Two new ternary platinum borides, YPtxB6-2x and YbPtxB6-2x, were obtained by argon-arc melting of the elements followed by annealing at 780 °C (750 °C). The structures of these compounds combine the fragments of CaB6- and AuCu3-type structures [space group Pm3̅m; x = 1.15, a = 4.0550(4) Å and x = 1.34, a = 4.0449(2) Å for YPtxB6-2x and YbPtxB6-2x, respectively; single-crystal X-ray diffraction]. Two possible variants of B/Pt ordering (space group P4/mmm) were created via a group-subgroup approach targeting the derived stoichiometry. The architecture of the type-I YPtxB6-2x structure model (a' = a, b' = b, c' = c) combines the 4.82 boron nets alternating with the layers of Y and Pt; the type-II YPtxB6-2x structure model (a' = 2a, b' = 2b, c' = c) exhibits columns of linked [B24] truncated cubes filled with Y running along the c axis. The striking features of both structural models are [B4Pt2] octahedra. The structural similarities with hitherto reported structures (YB2C2, M2Ni21B20, MNi21B20, and ErNiB4) were drawn supporting the verity of these models. A chemical bonding analysis for type-I and type-II YPtxB6-2x based on electron localization function distribution revealed a two-center interaction forming the 4.82 boron nets for type-I YPtxB6-2x and a covalent bonding within [B4Pt2] octahedra as well as a two-center interaction for B-B intraoctahedral bonds for type-II YPtxB6-2x. Analysis of Bader charges revealed the cationic character of the yttrium atoms. The interactions for nondistorted areas of the structures agree well with the bonding picture calculated for constituent building structures, YB6 and YPt3. Electronic structure calculations predict YPtxB6-2x to be a metal with the density of states of around N(EF) = 1 states eV-1 f.u.-1. The exploration of the Y-Pt-B system in the relevant concentration range elucidated the homogeneity field of YPtxB6-2x (0.90 ≤ x ≤ 1.40) and revealed the existence of three more ternary phases at 780 °C: YPt2B (space group P6222), YPt3B (space group P4mm), and YPt5B2 (space group C2/m).

4.
Dalton Trans ; 52(18): 6085-6096, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37060122

RESUMEN

The existence of new ternary compounds Y6Pt13X4 (X = Al, Ga) with the site occupancy variant of the subnitride Ba6Na16N (space group Im3̄m, no. 229) has been established for the first time by single crystal and powder X-ray diffraction from alloys annealed at 600 °C. The striking structural units in these compounds are platinum centered [PtY6] octahedra interconnected via Y-Y bonds and embedded in the XPt3 framework. The structural similarities with the Ce3Ni6Si2-type compounds are discussed. Electronic density of states calculated in the framework of DFT claims the compounds to be metals. The electronic band structures of both compounds resemble each other due to intrinsic similarities in the crystal structures. The analysis of bonding within and between structural fragments based on evaluation of electronic structures, Bader charges and ELF distributions in Y6Pt13X4 (X = Al, Ga) suggests the overall picture of these phases as polar intermetallics, containing a mixture of electrostatically driven interactions (such as those between complementary charged yttrium and platinum) and metallic bonding (such as Pt-Al (Ga), Pt-Pt and Y-Al (Ga)).

5.
Inorg Chem ; 56(17): 10549-10558, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28812877

RESUMEN

Two borides, ScRu2B3 and Sc2RuB6, were obtained by argon-arc melting of the elements followed by annealing at 800 °C. ScRu2B3 exhibits a new structure type with the space group Cmcm (a = 3.0195(2) Å, b = 15.4056(8) Å, c = 5.4492(3) Å; single crystal X-ray data; RF2 = 0.0105). Sc2RuB6 adopts the Y2ReB6-type structure (space group Pbam; a = 8.8545(2) Å, b = 11.1620(3) Å, c = 3.4760(1) Å; single crystal X-ray data; RF2 = 0.0185). ScRu2B3 displays an unusual intergrowth of CeCo3B2- and AlB2-related slabs; a striking feature is a boat configuration of puckered boron hexagons within infinite graphite like boron layers (63 nets). Sc2RuB6 presents two-dimensional planar nets of condensed boron pentagons, hexagons, and heptagons sandwiched between metal layers. In Sc/Y substituted Y2ReB6-type, Y atoms are distributed exclusively inside the boron heptagons. Exploration of the Sc-Ru-B system at 800 °C including binary boundaries employing EPMA and powder X-ray diffraction technique furthermore rules out the existence of previously reported "ScRuB4" but confirms the formation and crystal structure of Sc2Ru5B4. ScRu4B4 forms in cast alloys (LuRu4B4-type structure; space group I41/acd (No. 142), a = 7.3543(2) Å, c = 14.92137(8) Å). Cell parameters and atomic coordinates have been refined for ScRu2B3, Sc2RuB6, and ScRu4B4 in the scope of the generalized gradient approximation. Ab initio electronic structure calculations indicate a moderate electronic density of states at the Fermi level situated near the upper edge of essentially filled d-bands. Electrical resistivity measurements characterize ScRu2B3 and Sc2RuB6 as metals in concord with electronic band structure calculations.

6.
Chemistry ; 23(20): 4810-4817, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28182845

RESUMEN

A new member of the series of Th7 Fe3 -type derivative structures, h-(Pd0.86 Cu0.14 )7 B3 (≡Pd6.02 Cu0.98 B3 , unique structure type Pd6 CuB3 , space group P63 cm, a=12.9426(9) Å, c=4.8697(4) Å, single-crystal X-ray diffraction (XRD) data) was obtained from as cast alloys and alloys annealed at 600-650 °C. Further substitution of Cu by Pd led to formation of a Mn7 C3 -type structure, o-(Pd0.93 Cu0.07 )7 B3 (≡Pd6.51 Cu0.49 B3 , space group Pnma, a=4.8971(2) Å, b=7.5353(3) Å, c=12.9743(6) Å, single-crystal XRD). Isotypic LT h-(Pt0.70 Cu0.30 )7 B3 (≡Pt4.90 Cu2.10 B3 ) was observed in the Pt-Cu-B system as a low-temperature (LT) phase (T≤600 °C) (powder XRD), whereas the Th7 Fe3 -type (high-temperature (HT) h-(Pt0.73 Cu0.27 )7 B3 ≡Pt5.11 Cu1.89 B3 , space group P63 mc, a=7.4671(1) Å, c=4.9039(1) Å, powder XRD) proved to be stable at high temperature. The three structures are built of columns of face connected metal octahedra and columns of metal tetrahedra alternatingly fused by common faces and vertices. Boron atoms are found in trigonal prisms formed by metal atoms. The volumes of the three new Th7 Fe3 -type derivative borides relate as 1:2:3. Superconductivity was discovered for Pt4.9 Cu2.1 B3 (Pd6 CuB3 -type) and Pt5.1 Cu1.9 B3 (Th7 Fe3 -type) below 0.67 and 0.66 K, respectively. Despite the close value of the transition temperature the values of the upper critical field at 0 K differ as 0.37 T and 0.27 T for the two compounds.

7.
Dalton Trans ; 45(12): 5262-73, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26895373

RESUMEN

Phase relations and crystal structures have been evaluated within the sections LaNi2Si2-LaZn2Si2 and CeNi2Si2-CeZn2Si2 at 800 °C using electron microprobe analysis and X-ray powder and single crystal structure analyses. Although the systems La-Zn-Si and Ce-Zn-Si at 800 °C do not reveal compounds such as "LaZn2Si2" or "CeZn2Si2", solid solutions {La,Ce}(Ni1-xZnx)2Si2 exist with the Ni/Zn substitution starting from {La,Ce}Ni2Si2 (ThCr2Si2-type; I4/mmm) up to x = 0.18 for Ce(Ni1-xZnx)2Si2 and x = 0.125 for La(Ni1-xZnx)2Si2. For higher Zn-contents 0.25 ≤ x ≤ 0.55 the solutions adopt the CaBe2Ge2-type (P4/nmm). The investigations are backed by single crystal X-ray diffraction data for Ce(Ni0.61Zn0.39)2Si2 (P4/nmm; a = 0.41022(1) nm, c = 0.98146(4) nm; RF = 0.012) and by Rietveld refinement for La(Ni0.56Zn0.44)2Si2 (P4/nmm; a = 0.41680(6) nm, c = 0.99364(4) nm; RF = 0.043). Interestingly, the Ce-Zn-Si system contains a ternary phase CeZn2(Si1-xZnx)2 of the ThCr2Si2 structure type (0.25 ≤ x ≤ 0.30 at 600 °C), which forms peritectically at T = 695 °C but does not include the composition "CeZn2Si2". The primitive high temperature tetragonal phase with the CaBe2Ge2-type has also been observed for the first time in the Ce-Ni-Si system at CeNi2+xSi2-x, x = 0.33 (single crystal data, P4/nmm; a = 0.40150(2) nm, c = 0.95210(2) nm; RF = 0.0163). Physical properties (from 400 mK to 300 K) including specific heat, electrical resistivity and magnetic susceptibility have been elucidated for Ce(Ni0.61Zn0.39)2Si2 and La(Ni0.56Zn0.44)2Si2. Ce(Ni0.61Zn0.39)2Si2 exhibits a Kondo-type ground state. Low temperature specific heat data of La(Ni0.56Zn0.44)2Si2 suggest a spin fluctuation scenario with an enhanced value of the Sommerfeld constant.

8.
Dalton Trans ; 45(11): 4879-87, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26875687

RESUMEN

The formation of two distinct derivative structures of Ti2Ni-type, interstitial Pd3Cu3B and substitutive Pd5Cu5B2, has been elucidated in Pd-Cu-B alloys from analysis of X-ray single crystal and powder diffraction data and supported by SEM. The metal atom arrangement in the new boride Pd3Cu3B (space group Fd3m, W3Fe3C-type structure, a = 1.1136(3) nm) follows the pattern of atom distribution in the CdNi-type structure. Pd5Cu5B2 (space group F(4)3m, a = 1.05273(5) nm) exhibits a non-centrosymmetric substitutive derivative of the Ti2Ni-type structure. The reduction of symmetry on passing from Ti2Ni-type structure to Pd5Cu5B2 corresponds to the loss of an inversion centre delivered by an ordered occupation of the Ni position (32e) by dissimilar atoms, Cu and B. In both structures, the boron atom centers Pd forming [BPd6] octahedra in Pd3Cu3B and [BPd6] trigonal prisms in Pd5Cu5B2. Neither a perceptible homogeneity range nor mutual solid solubility was observed for two compounds at 600 °C, while in as cast conditions Pd5Cu5B2 exhibits an extended homogeneity range formed by a partial substitution of Cu atoms (in 24f) by Pd (Pd5+xCu5-xB2, 0 ≤x≤ 1). Electrical resistivity measurements performed on Pd3Cu3B as well as on Pd-poor and Pd-rich termini of Pd5+xCu5-xB2 annealed at 600 °C and in as cast conditions respectively demonstrated the absence of any phase transitions for this compounds in the temperature region from 0.3 K to 300 K.

9.
Inorg Chem ; 54(22): 10958-65, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26524081

RESUMEN

On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, ß = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.

10.
Inorg Chem ; 52(8): 4185-97, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23540751

RESUMEN

Three novel europium platinum borides have been synthesized by arc melting of constituent elements and subsequent annealing. They were characterized by X-ray powder and single-crystal diffraction: EuPt4B, CeCo4B type, P6/mmm, a = 0.56167(2) nm, c = 0.74399(3) nm; Eu3Pt7B2, Ca3Al7Cu2 type as an ordered variant of PuNi3, R3m, a = 0.55477(2) nm, c = 2.2896(1) nm; and Eu5Pt18B(6-x), a new unique structure type, Fmmm, a = 0.55813(3) nm, b = 0.95476(5) nm, c = 3.51578(2) nm. These compounds belong to the CaCu5 family of structures, revealing a stacking sequence of CaCu5-type slabs with different structural units: CaCu5 and CeCo3B2 type in EuPt4B; CeCo3B2 and Laves MgCu2 type in Eu3Pt7B2; and CaCu5-, CeCo3B2-, and site-exchange ThCr2Si2-type slabs in Eu5Pt18B(6-x). The striking motif in the Eu5Pt18B(6-x) structure is the boron-centered Pt tetrahedron [BPt4], which build chains running along the a axis and plays a decisive role in the structure arrangement by linking the terminal fragments of repeating blocks of fused Eu polyhedra. Physical properties of two compounds, EuPt4B and Eu3Pt7B2, were studied. Both compounds were found to order magnetically at 36 and 57 K, respectively. For EuPt4B a mixed-valence state of the Eu atom was confirmed via magnetic and specific heat measurements. Moreover, the Sommerfeld value of the specific heat of Eu3Pt7B2 was found to be extraordinarily large, on the order of 0.2 J/mol K(2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...