Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(11): 1647-1657, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578274

RESUMEN

Long-term therapeutic outcomes of multiple sclerosis (MS) remain hindered by the chronic nature of immune cell stimulation toward self-antigens. Development of novel methods to target and deplete autoreactive T lymphocytes remains an attractive target for therapeutics for MS. We developed a programmed cell death 1 (PD-1)-targeted radiolabeled mAb and assessed its ability to deplete activated PD-1+ T lymphocytes in vitro and its ability to reduce disease burden of the myelin oligodendrocyte glycoprotein 35-55 experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice. We also investigated the upregulation of PD-1 on infiltrating lymphocytes in an animal model of MS. Finally, we demonstrate the (to our knowledge) first reported positron-emission tomography/computed tomography imaging of activated PD-1+ cells in the EAE animal model of MS. We found that the 177Lu radioisotope-labeled anti-PD-1 mAb demonstrated significant in vitro cytotoxicity toward activated CD4+PD-1+ T lymphocytes and led to significant reduction in overall disease progression in the EAE animal model. Our results show high expression of PD-1 on infiltrating lymphocytes in the spinal cords of EAE diseased animals. Positron-emission tomography/computed tomography imaging of the anti-PD-1 mAb demonstrated significant uptake in the cervical draining lymph nodes highlighting accumulation of activated lymphocytes. Targeted depletion of T lymphocytes using T cell activation markers such as PD-1 may present a novel method to reduce autoimmune attack and inflammation in autoimmune diseases such as MS. Development of multimodal nuclear theranostic agents may present the opportunity to monitor T cell activation via imaging radioisotopes and simultaneously treat MS using therapeutic radioisotopes.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Activación de Linfocitos , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Ratones , Activación de Linfocitos/inmunología , Anticuerpos Monoclonales , Linfocitos T/inmunología , Femenino , Modelos Animales de Enfermedad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Humanos
2.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374028

RESUMEN

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Asunto(s)
Gránulos Citoplasmáticos , Esclerosis Múltiple , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Oligodendroglía , Citocinas/metabolismo , Estrés Fisiológico , Esclerosis Múltiple/metabolismo
3.
Nat Commun ; 15(1): 356, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191621

RESUMEN

Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis. We confirmed this in vivo in experimental autoimmune encephalomyelitis employing CLIPseq specific for hnRNP A1, where hnRNP A1 differentially binds and regulates RNA, including aberrantly spliced targets identified in human samples. Additionally, dysfunctional hnRNP A1 expression in neurons caused neurite loss and identical changes in splicing, corroborating hnRNP A1 dysfunction as a cause of neurodegeneration. Collectively, these data indicate hnRNP A1 dysfunction causes altered neuronal RNA splicing, resulting in neurodegeneration in MS.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea A1 , Esclerosis Múltiple , Humanos , Empalme Alternativo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Esclerosis Múltiple/genética , ARN , Empalme del ARN/genética
4.
Front Mol Biosci ; 10: 1178439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426420

RESUMEN

The RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (A1) regulates RNA metabolism, which is crucial to maintaining cellular homeostasis. A1 dysfunction mechanistically contributes to reduced cell viability and loss, but molecular mechanisms of how A1 dysfunction affects cell viability and loss, and methodologies to attenuate its dysfunction, are lacking. Utilizing in silico molecular modeling and an in vitro optogenetic system, this study examined the consequences of RNA oligonucleotide (RNAO) treatment on attenuating A1 dysfunction and its downstream cellular effects. In silico and thermal shift experiments revealed that binding of RNAOs to the RNA Recognition Motif 1 of A1 is stabilized by sequence- and structure-specific RNAO-A1 interactions. Using optogenetics to model A1 cellular dysfunction, we show that sequence- and structure-specific RNAOs significantly attenuated abnormal cytoplasmic A1 self-association kinetics and A1 cytoplasmic clustering. Downstream of A1 dysfunction, we demonstrate that A1 clustering affects the formation of stress granules, activates cell stress, and inhibits protein translation. With RNAO treatment, we show that stress granule formation is attenuated, cell stress is inhibited, and protein translation is restored. This study provides evidence that sequence- and structure-specific RNAO treatment attenuates A1 dysfunction and its downstream effects, thus allowing for the development of A1-specific therapies that attenuate A1 dysfunction and restore cellular homeostasis.

5.
Glia ; 71(8): 2045-2066, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37132422

RESUMEN

Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Remielinización , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/terapia , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Animales , Ratones , Ratones Endogámicos C57BL , Anaerobiosis , Oxígeno , Femenino
6.
Glia ; 71(3): 633-647, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36382566

RESUMEN

Oligodendrocyte (OL) damage and death are prominent features of multiple sclerosis (MS) pathology, yet mechanisms contributing to OL loss are incompletely understood. Dysfunctional RNA binding proteins (RBPs), hallmarked by nucleocytoplasmic mislocalization and altered expression, have been shown to result in cell loss in neurologic diseases, including in MS. Since we previously observed that the RBP heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was dysfunctional in neurons in MS, we hypothesized that it might also contribute to OL pathology in MS and relevant models. We discovered that hnRNP A1 dysfunction is characteristic of OLs in MS brains. These findings were recapitulated in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, where hnRNP A1 dysfunction was characteristic of OLs, including oligodendrocyte precursor cells and mature OLs in which hnRNP A1 dysfunction correlated with demyelination. We also found that hnRNP A1 dysfunction was induced by IFNγ, indicating that inflammation influences hnRNP A1 function. To fully understand the effects of hnRNP A1 dysfunction on OLs, we performed siRNA knockdown of hnRNP A1, followed by RNA sequencing. RNA sequencing detected over 4000 differentially expressed transcripts revealing alterations to RNA metabolism, cell morphology, and programmed cell death pathways. We confirmed that hnRNP A1 knockdown was detrimental to OLs and induced apoptosis and necroptosis. Together, these data demonstrate a critical role for hnRNP A1 in proper OL functioning and survival and suggest a potential mechanism of OL damage and death in MS that involves hnRNP A1 dysfunction.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Esclerosis Múltiple/patología , Proteínas de Unión al ARN/metabolismo , ARN Interferente Pequeño
7.
Neurobiol Dis ; 170: 105775, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618205

RESUMEN

Neurodegeneration, the progressive loss or damage to neurons and axons, underlies permanent disability in multiple sclerosis (MS); yet its mechanisms are incompletely understood. Recent data indicates autoimmunity to several intraneuronal antigens, including the RNA binding protein (RBP) heterogenous nuclear ribonucleoprotein A1 (hnRNP A1), as contributors to neurodegeneration. We previously showed that addition of anti-hnRNP A1 antibodies, which target the same immunodominant domain of MS IgG, to mice with experimental autoimmune encephalomyelitis (EAE) worsened disease and resulted in an exacerbation of hnRNP A1 dysfunction including cytoplasmic mislocalization of hnRNP A1, stress granule (SG) formation and neurodegeneration in the chronic stages of disease. Because this previous study focused on a singular timepoint during EAE, it is unclear whether anti-hnRNP A1 antibody induced hnRNP A1 dysfunction caused neurodegeneration or was result of it. In the present study, we analyzed in vivo and in vitro models of anti-hnRNP A1 antibody-mediated autoimmunity for markers of hnRNP A1 dysfunction and neurodegeneration over a time course to gain a better understanding of the connection between hnRNP A1 dysfunction and neurodegeneration. Anti-hnRNP A1 antibody treatment resulted in increased neuronal hnRNP A1 mislocalization and nuclear depletion temporally followed by altered RNA expression and SG formation, and lastly an increase in necroptotic signalling and neuronal cell death. Treatment with necrostatin-1s inhibited necroptosis and partially rescued anti-hnRNP A1 antibody-mediated neurodegeneration while clathrin knockdown specifically inhibited anti-hnRNP A1 antibody uptake into neurons. This data identifies a novel antibody-mediated mechanism of neurodegeneration, which may be targeted to inhibit neurodegeneration and prevent permanent neurological decline in persons living with MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Autoinmunidad , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ratones , Esclerosis Múltiple/metabolismo , Degeneración Nerviosa , Neuronas/metabolismo , Ribonucleoproteínas
8.
Brain Sci ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34679349

RESUMEN

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system with a significant neurodegenerative component. Dysfunctional RNA-binding proteins (RBPs) are causally linked to neuronal damage and are a feature of MS, including the mislocalization of the RBP heterogeneous nuclear ribonucleoprotein A1 (A1). Here, we show that primary neurons exposed to pro-inflammatory cytokines and anti-A1 antibodies, both characteristic of an MS autoimmune response, displayed increased A1 mislocalization, stress granule formation, and decreased neurite length, a marker of neurodegeneration. These findings illustrate a significant relationship between secreted immune factors, A1 dysfunction, and neuronal damage in a disease-relevant model system.

9.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34697074

RESUMEN

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA binding protein (RBP) that is localized within neurons and plays crucial roles in RNA metabolism. Its importance in neuronal functioning is underscored from the study of its pathogenic features in many neurodegenerative diseases where neuronal hnRNP A1 is mislocalized from the nucleus to the cytoplasm resulting in loss of hnRNP A1 function. Here, we model hnRNP A1 loss-of-function by siRNA-mediated knock-down in differentiated Neuro-2a cells. Through RNA sequencing (RNA-seq) followed by gene ontology (GO) analyses, we show that hnRNP A1 is involved in important biological processes, including RNA metabolism, neuronal function, neuronal morphology, neuronal viability, and stress granule (SG) formation. We further confirmed several of these roles by showing that hnRNP A1 knock-down results in a reduction of neurite outgrowth, increase in cell cytotoxicity and changes in SG formation. In summary, these findings indicate that hnRNP A1 loss-of-function contributes to neuronal dysfunction and cell death and implicates hnRNP A1 dysfunction in the pathogenesis of neurodegenerative diseases.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea A1/genética , Neuritas , Neuronas , Gránulos de Estrés , Animales , Línea Celular , Técnicas de Silenciamiento del Gen , Ratones , Neuritas/patología , Neuronas/patología
10.
Biology (Basel) ; 10(8)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34439945

RESUMEN

The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.

11.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809384

RESUMEN

Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ribonucleoproteína Nuclear Heterogénea A1/genética , Esclerosis Múltiple/genética , Degeneración Nerviosa/genética , Esclerosis Amiotrófica Lateral/patología , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Esclerosis Múltiple/patología , Mutación/genética
12.
Front Mol Biosci ; 8: 659610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912591

RESUMEN

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP family of conserved proteins that is involved in RNA transcription, pre-mRNA splicing, mRNA transport, protein translation, microRNA processing, telomere maintenance and the regulation of transcription factor activity. HnRNP A1 is ubiquitously, yet differentially, expressed in many cell types, and due to post-translational modifications, can vary in its molecular function. While a plethora of knowledge is known about the function and dysfunction of hnRNP A1 in diseases other than neurodegenerative disease (e.g., cancer), numerous studies in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, multiple sclerosis, spinal muscular atrophy, Alzheimer's disease, and Huntington's disease have found that the dysregulation of hnRNP A1 may contribute to disease pathogenesis. How hnRNP A1 mechanistically contributes to these diseases, and whether mutations and/or altered post-translational modifications contribute to pathogenesis, however, is currently under investigation. The aim of this comprehensive review is to first describe the background of hnRNP A1, including its structure, biological functions in RNA metabolism and the post-translational modifications known to modify its function. With this knowledge, the review then describes the influence of hnRNP A1 in neurodegenerative disease, and how its dysfunction may contribute the pathogenesis.

13.
Int J Mol Sci ; 21(13)2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32604997

RESUMEN

Neurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction. Studying RNA-binding protein dysfunction addresses a gap in our understanding of the pathogenesis of MS, which will allow for novel therapies to be generated to attenuate neurodegeneration before irreversible central nervous system damage occurs.


Asunto(s)
Esclerosis Múltiple/complicaciones , Enfermedades Neurodegenerativas/patología , Proteínas de Unión al ARN/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo
14.
Ann Clin Transl Neurol ; 7(7): 1214-1224, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32608162

RESUMEN

OBJECTIVE: Neurodegeneration is thought to be the primary cause of neurological disability in multiple sclerosis (MS). Dysfunctional RNA-binding proteins (RBPs) including their mislocalization from nucleus to cytoplasm, stress granule formation, and altered RNA metabolism have been found to underlie neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Yet, little is known about the role of dysfunctional RBPs in the pathogenesis of neurodegeneration in MS. As a follow-up to our seminal finding of altered RBP function in a single case of MS, we posited that there would be evidence of RBP dysfunction in cortical neurons in MS. METHODS: Cortical neurons from 12 MS and six control cases were analyzed by immunohistochemistry for heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and TAR-DNA-binding protein-43 (TDP-43). Seven distinct neuronal phenotypes were identified based on the nucleocytoplasmic staining of these RBPs. Statistical analyses were performed by analyzing each phenotype in relation to MS versus controls. RESULTS: Analyses revealed a continuum of hnRNP A1 and TDP-43 nucleocytoplasmic staining was found in cortical neurons, from neurons with entirely nuclear staining with little cytoplasmic staining in contrast to those with complete nuclear depletion of RBPs concurrent with robust cytoplasmic staining. The neuronal phenotypes that showed the most nucleocytoplasmic mislocalization of hnRNP A1 and TDP-43 statistically distinguished MS from control cases (P < 0.01, P < 0.001, respectively). INTERPRETATION: The discovery of hnRNP A1 and TDP-43 nucleocytoplasmic mislocalization in neurons in MS brain demonstrate that dysfunctional RBPs may play a role in neurodegeneration in MS, as they do in other neurological diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Esclerosis Múltiple/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Neuronas/clasificación
15.
J Neurosci Res ; 98(4): 704-717, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31755578

RESUMEN

Altered stress granule (SG) and RNA-binding protein (RBP) biology have been shown to contribute to the pathogenesis of several neurodegenerative diseases, yet little is known about their role in multiple sclerosis (MS). Pathological features associated with dysfunctional RBPs include RBP mislocalization from its normal nuclear location to the cytoplasm and the formation of chronic SGs. We tested the hypothesis that altered SG and RBP biology might contribute to the neurodegeneration in experimental autoimmune encephalomyelitis (EAE). C57BL/6 female mice were actively immunized with MOG35-55 to induce EAE. Spinal cords were examined for mislocalization of the RBPs, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and TAR-DNA binding protein-43 (TDP-43), SGs, neurodegeneration (SMI-32), T cells (CD3), and macrophages (CD68). In contrast to naive mice, mice with EAE showed SG formation (p < 0.0001) and mislocalization of hnRNP A1 (p < 0.05) in neurons of the ventral spinal cord gray matter, which correlated with clinical score (R = 0.8104, p = 0.0253). In these same areas, there was a neuronal loss (p < 0.0001) and increased SMI-32 immunoreactivity (both markers of neurodegeneration) and increased staining for CD3+ T cells and IFN-gamma. These findings recapitulate the SG and RBP biology and markers of neurodegeneration in MS tissues and suggest that altered SG and RBP biology contribute to the neurodegeneration in EAE, which might also apply to the pathogenesis of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Proteínas de Unión al ARN/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Sustancia Gris/metabolismo , Sustancia Gris/patología , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Fisiológico
16.
J Comp Neurol ; 528(10): 1704-1724, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31872424

RESUMEN

Neurodegeneration, including loss of neurons and axons, is a feature of progressive forms of multiple sclerosis (MS). The mechanisms underlying neurodegeneration are mostly unknown. Research implicates autoimmunity to nonmyelin self-antigens as important contributors to disease pathogenesis. Data from our lab implicate autoimmunity to the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a possible mechanism of neurodegeneration in MS. MS patients make antibodies to hnRNP A1, which have been shown to lead to neuronal dysfunction in vitro. Using an animal model of MS, experimental autoimmune encephalomyelitis (EAE), we show here that injection of anti-hnRNP A1 antibodies, in contrast to control antibodies, resulted in worsened disease and increased neurodegeneration. We found a reduction of NeuN+ neuronal cell bodies in areas of the ventral gray matter of the spinal cord where anti-hnRNP A1 antibodies localized. Neurons displayed increased levels of hnRNP A1 nucleocytoplasmic mislocalization and stress granule formation, both markers of neuronal injury. Anti-hnRNP A1 antibodies were found to surround neuronal cell bodies and interact with CD68+ immune cells via Fc receptors. Additionally, anti-hnRNP A1 antibodies were found within neuronal cell bodies including those of the ventral spinocerebellar tract (VSCT), a tract previously shown to undergo neurodegeneration in anti-hnRNP A1 antibody injected EAE mice. Finally, both immune cells and neurons showed increased levels of inducible nitric oxide synthase, another indicator of cell damage. These findings suggest that autoimmunity to RBPs, such as hnRNP A1, play a role in neurodegeneration in EAE with important implications for the pathogenesis of MS.


Asunto(s)
Autoanticuerpos/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Ribonucleoproteína Nuclear Heterogénea A1/inmunología , Degeneración Nerviosa/inmunología , Neuronas/patología , Animales , Autoantígenos/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple , Neuronas/inmunología
17.
PLoS One ; 14(2): e0212357, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30768649

RESUMEN

Antibodies, including antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1, have been shown to contribute to the pathogenesis of multiple sclerosis, thus it is important to assess their biological activity using animal models of disease. Near-infrared optical imaging of fluorescently labeled antibodies and matrix metalloproteinase activity were measured and quantified in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis. We successfully labeled, imaged and quantified the fluorescence signal of antibodies that localized to the central nervous system of mice with experimental autoimmune encephalomyelitis. Fluorescently labeled anti-heterogeneous nuclear ribonucleoprotein A1 antibodies persisted in the central nervous system of mice with experimental autoimmune encephalomyelitis, colocalized with matrix metalloproteinase activity, correlated with clinical disease and shifted rostrally within the spinal cord, consistent with experimental autoimmune encephalomyelitis being an ascending paralysis. The fluorescent antibody signal also colocalized with matrix metalloproteinase activity in brain. Previous imaging studies in experimental autoimmune encephalomyelitis analyzed inflammatory markers such as cellular immune responses, dendritic cell activity, blood brain barrier integrity and myelination, but none assessed fluorescently labeled antibodies within the central nervous system. This data suggests a strong association between autoantibody localization and disease. This system can be used to detect other antibodies that might contribute to the pathogenesis of autoimmune diseases of the central nervous system including multiple sclerosis.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Sistema Nervioso Central/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/patología , Espectroscopía Infrarroja Corta , Animales , Anticuerpos Monoclonales/química , Barrera Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagen , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Colorantes Fluorescentes/química , Ribonucleoproteína Nuclear Heterogénea A1/inmunología , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Médula Espinal/diagnóstico por imagen
18.
J Neuroimmunol ; 324: 149-156, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30190085

RESUMEN

Dysfunction of the RNA binding protein (RBP) heterogeneous nuclear ribonuclear protein A1 (hnRNP A1) has been shown to contribute to the pathogenesis of neurodegenerative diseases, but its involvement in multiple sclerosis (MS) is largely unknown. In a neuronal cell line, interferon-γ caused hnRNP A1 nucleocytoplasmic mislocalization; colocalization of hnRNP A1 in stress granules (SGs); and inhibition of translation. Neurons in the brain of a MS patient showed pathogenic RBP dysfunction, including nuclear depletion of hnRNP A1, its mislocalization to the cytoplasm, and its colocalization in SGs. These data indicate a role for dysfunctional hnRNP A1 in the pathogenesis of MS.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Esclerosis Múltiple/metabolismo , Estrés Oxidativo/fisiología , Línea Celular Tumoral , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Brain Sci ; 7(6)2017 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-28629158

RESUMEN

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. In recent years, it has become more evident that neurodegeneration, including neuronal damage and axonal injury, underlies permanent disability in MS. This manuscript reviews some of the mechanisms that could be responsible for neurodegeneration and axonal damage in MS and highlights the potential role that dysfunctional heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and antibodies to hnRNP A1 may play in MS pathogenesis.

20.
J Clin Cell Immunol ; 7(2): 402, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27375925

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) is the most common demyelinating disorder of the central nervous system (CNS). Data suggest that antibodies to CNS targets contribute to the pathogenesis of MS. MS patients produce autoantibodies to heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). hnRNP A1 is an RNA binding protein (RBP) overexpressed in neurons that functions in pre-mRNA splicing, mRNA trafficking, and translation. Previously, we showed that anti-hnRNP A1 antibodies entered neuronal cells (in vitro) via clathrin-mediated endocytosis, caused mislocalization of endogenous hnRNP A1 protein and increased markers of neurodegeneration including decreased ATP concentration and apoptosis. In this study, we hypothesized that anti-hnRNP A1 antibodies might cause stress granule formation and altered levels of RNAs and proteins that bind hnRNP A1. METHODS: Neuronal cell lines were exposed to anti-hnRNP A1 and isotype-matched control antibodies in vitro and examined for neuronal granule formation, including stress granules, P bodies and transport granules. In addition, RNAs that bound hnRNP A1 were determined. Levels of RNA and their translated proteins were measured upon exposure to the anti-hnRNP A1 antibodies. RESULTS: Anti-hnRNP A1 antibodies induced and localized to stress granules, a marker of neurodegeneration, within a neuronal cell line. The anti-hnRNP A1 antibodies did not induce P bodies or neuronal granules. Clinically relevant RNAs were found to bind hnRNP A1. In addition, the anti-hnRNP A1 antibodies caused reduced levels of RNA and protein of the spinal paraplegia genes (SPGs) 4 and 7, which when mutated mimic progressive MS. CONCLUSIONS: Taken together, these data suggest potential mechanisms by which autoantibodies may contribute to neurodegeneration in MS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...