Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38559074

RESUMEN

Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.

2.
Nat Struct Mol Biol ; 31(5): 777-790, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491139

RESUMEN

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa I , ADN Primasa , Replicación del ADN , Modelos Moleculares , Xenopus laevis , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , Animales , Dominio Catalítico , ADN/metabolismo , ADN/química , ADN/biosíntesis , Cartilla de ADN/metabolismo , Cartilla de ADN/genética , ARN/metabolismo , ARN/química , Conformación Proteica
3.
J Mol Biol ; 435(24): 168330, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37884206

RESUMEN

DNA replication in eukaryotes relies on the synthesis of a ∼30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ∼20 nucleotides of DNA. Here, we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the surprisingly low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.


Asunto(s)
ADN Primasa , ARN , Humanos , ADN Primasa/metabolismo , Cartilla de ADN , Replicación del ADN , ARN/metabolismo
4.
bioRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37577606

RESUMEN

DNA replication in eukaryotes relies on the synthesis of a ~30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ~20 nucleotides of DNA. Here we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.

5.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36993335

RESUMEN

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.

6.
Biochemistry ; 61(11): 1113-1123, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617695

RESUMEN

DNA synthesis during replication begins with the generation of an ∼10-nucleotide primer by DNA primase. Primase contains a redox-active 4Fe-4S cluster in the C-terminal domain of the p58 subunit (p58C). The redox state of this 4Fe-4S cluster can be modulated via the transport of charge through the protein and the DNA substrate (redox switching); changes in the redox state of the cluster alter the ability of p58C to associate with its substrate. The efficiency of redox switching in p58C can be altered by mutating tyrosine residues that bridge the 4Fe-4S cluster and the nucleic acid binding site. Here, we report the effects of mutating bridging tyrosines to phenylalanines in yeast p58C. High-resolution crystal structures show that these mutations, even with six tyrosines simultaneously mutated, do not perturb the three-dimensional structure of the protein. In contrast, measurements of the electrochemical properties on DNA-modified electrodes of p58C containing multiple tyrosine to phenylalanine mutations reveal deficiencies in their ability to engage in DNA charge transport. Significantly, this loss of electrochemical activity correlates with decreased primase activity. While single-site mutants showed modest decreases in activity compared to that of the wild-type primase, the protein containing six mutations exhibited a 10-fold or greater decrease. Thus, many possible tyrosine-mediated pathways for charge transport in yeast p58C exist, but inhibiting these pathways together diminishes the ability of yeast primase to generate primers. These results support a model in which redox switching is essential for primase activity.


Asunto(s)
ADN Primasa , Proteínas Hierro-Azufre , ADN/química , ADN Primasa/metabolismo , Proteínas Hierro-Azufre/química , ARN/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tirosina/genética
7.
Proteins ; 89(11): 1399-1412, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34156100

RESUMEN

The Receptor for Advanced Glycation End products (RAGE) is a pattern recognition receptor that signals for inflammation via the NF-κB pathway. RAGE has been pursued as a potential target to suppress symptoms of diabetes and is of interest in a number of other diseases associated with chronic inflammation, such as inflammatory bowel disease and bronchopulmonary dysplasia. Screening and optimization have previously produced small molecules that inhibit the activity of RAGE in cell-based assays, but efforts to develop a therapeutically viable direct-binding RAGE inhibitor have yet to be successful. Here, we show that a fragment-based approach can be applied to discover fundamentally new types of RAGE inhibitors that specifically target the ligand-binding surface. A series of systematic assays of structural stability, solubility, and crystallization were performed to select constructs of the RAGE ligand-binding domain and optimize conditions for NMR-based screening and co-crystallization of RAGE with hit fragments. An NMR-based screen of a highly curated ~14 000-member fragment library produced 21 fragment leads. Of these, three were selected for elaboration based on structure-activity relationships generated through cycles of structural analysis by X-ray crystallography, structure-guided design principles, and synthetic chemistry. These results, combined with crystal structures of the first linked fragment compounds, demonstrate the applicability of the fragment-based approach to the discovery of RAGE inhibitors.


Asunto(s)
Benzamidas/química , Diseño de Fármacos/métodos , Imidazoles/química , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Imidazoles/metabolismo , Imidazoles/farmacología , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
8.
J Mol Biol ; 431(10): 1956-1965, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30954575

RESUMEN

Helicobacter pylori colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. H. pylori secretes a pore-forming toxin called vacuolating cytotoxin A (VacA), which contains two domains (p33 and p55) and assembles into oligomeric structures. Using single-particle cryo-electron microscopy, we have determined low-resolution structures of a VacA dodecamer and heptamer, as well as a 3.8-Å structure of the VacA hexamer. These analyses show that VacA p88 consists predominantly of a right-handed beta-helix that extends from the p55 domain into the p33 domain. We map the regions of p33 and p55 involved in hexamer assembly, model how interactions between protomers support heptamer formation, and identify surfaces of VacA that likely contact membrane. This work provides structural insights into the process of VacA oligomerization and identifies regions of VacA protomers that are predicted to contact the host cell surface during channel formation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Helicobacter pylori/química , Microscopía por Crioelectrón/métodos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/ultraestructura , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
9.
Proc Natl Acad Sci U S A ; 115(52): 13186-13191, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30541886

RESUMEN

Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. Despite a different structural arrangement of tyrosines to facilitate electron transfer between the DNA substrate and [4Fe4S] cluster, in yeast, mutation of tyrosines Y395 and Y397 alters the same electron transfer chemistry and redox switch. Mutation of conserved tyrosine 395 diminishes the extent of p58C participation in normal redox-switching reactions, whereas mutation of conserved tyrosine 397 causes oxidative cluster degradation to the [3Fe4S]+ species during p58C redox signaling. Switching between oxidized and reduced states in the presence of the Y397 mutations thus puts primase [4Fe4S] cluster integrity and function at risk. Consistent with these observations, we find that yeast tolerate mutations to Y395 in p58C, but the single-residue mutation Y397L in p58C is lethal. Our data thus show that a constellation of tyrosines for protein-DNA electron transfer mediates the redox switch in eukaryotic primases and is required for primase function in vivo.


Asunto(s)
ADN Primasa/química , Proteínas Hierro-Azufre/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Cristalografía por Rayos X , ADN Primasa/genética , Transporte de Electrón , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Mutación , Oxidación-Reducción , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética
10.
PLoS One ; 13(12): e0209345, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30562384

RESUMEN

The regulatory subunit of human DNA primase has a C-terminal domain (p58C) that contains a [4Fe4S] cluster and binds DNA. Previous electrochemical analysis of a p58C construct revealed that its affinity for DNA is sensitive to the redox state of the [4Fe4S] cluster. Concerns about the validity of this conclusion have been raised, based in part on differences in X-ray crystal structures of the p58C272-464 construct used for that study and that of a N-terminally shifted p58C266-456 construct and consequently, an assumption that p58C272-464 has abnormal physical and functional properties. To address this controversy, a new p58C266-464 construct containing all residues was crystallized under the conditions previously used for crystallizing p58C272-464, and the solution structures of both constructs were assessed using circular dichroism and NMR spectroscopy. In the new crystal structure, p58C266-464 exhibits the same elements of secondary structure near the DNA binding site as observed in the crystal structure of p58C272-464. Moreover, in solution, circular dichroism and 15N,1H-heteronuclear single quantum coherence (HSQC) NMR spectra show there are no significant differences in the distribution of secondary structures or in the tertiary structure or the two constructs. To validate that the two constructs have the same functional properties, binding of a primed DNA template was measured using a fluorescence-based DNA binding assay, and the affinities for this substrate were the same (3.4 ± 0.5 µM and 2.7 ± 0.3 µM, respectively). The electrochemical properties of p58C266-464 were also measured and this p58C construct was able to engage in redox switching on DNA with the same efficiency as p58C272-464. Together, these results show that although p58C can be stabilized in different conformations in the crystalline state, in solution there is effectively no difference in the structure and functional properties of p58C constructs of different lengths.


Asunto(s)
ADN Primasa/química , Dominios Proteicos , Sitios de Unión , Dicroismo Circular , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , ADN Primasa/metabolismo , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , ARN/química , ARN/metabolismo
11.
J Am Chem Soc ; 140(49): 17153-17162, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30433774

RESUMEN

Generation of daughter strands during DNA replication requires the action of DNA primase to synthesize an initial short RNA primer on the single-stranded DNA template. Primase is a heterodimeric enzyme containing two domains whose activity must be coordinated during primer synthesis: an RNA polymerase domain in the small subunit (p48) and a [4Fe4S] cluster-containing C-terminal domain of the large subunit (p58C). Here we examine the redox switching properties of the [4Fe4S] cluster in the full p48/p58 heterodimer using DNA electrochemistry. Unlike with isolated p58C, robust redox signaling in the primase heterodimer requires binding of both DNA and NTPs; NTP binding shifts the p48/p58 cluster redox potential into the physiological range, generating a signal near 160 mV vs NHE. Preloading of primase with NTPs enhances catalytic activity on primed DNA, suggesting that primase configurations promoting activity are more highly populated in the NTP-bound protein. We propose that p48/p58 binding of anionic DNA and NTPs affects the redox properties of the [4Fe4S] cluster; this electrostatic change is likely influenced by the alignment of primase subunits during activity because the configuration affects the [4Fe4S] cluster environment and coupling to DNA bases for redox signaling. Thus, both binding of polyanionic substrates and configurational dynamics appear to influence [4Fe4S] redox signaling properties. These results suggest that these factors should be considered generally in characterizing signaling networks of large, multisubunit DNA-processing [4Fe4S] enzymes.


Asunto(s)
ADN Primasa/química , Proteínas Hierro-Azufre/química , ADN/química , ADN/metabolismo , ADN Primasa/genética , ADN Primasa/metabolismo , Técnicas Electroquímicas/métodos , Humanos , Proteínas Hierro-Azufre/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Elongación de la Transcripción Genética , Iniciación de la Transcripción Genética
12.
Methods Enzymol ; 595: 361-390, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882207

RESUMEN

Replication of DNA in eukaryotes is primarily executed by the combined action of processive DNA polymerases δ and ɛ. These enzymes cannot initiate synthesis of new DNA without the presence of a primer on the template ssDNA. The primers on both the leading and lagging strands are generated by DNA polymerase α-primase (pol-prim). DNA primase is a DNA-dependent RNA polymerase that synthesizes the first ~10 nucleotides and then transfers the substrate to polymerase α to complete primer synthesis. The mechanisms governing the coordination and handoff between primase and polymerase α are largely unknown. Isolated DNA primase contains a [4Fe-4S]2+ cluster that has been shown to serve as a redox switch modulating DNA binding affinity. This discovery suggests a mechanism for modulating the priming activity of primase and handoff to polymerase α. In this chapter, we briefly discuss the current state of knowledge of primase structure and function, including the role of its iron-sulfur cluster. This is followed by providing the methods for expressing, purifying, and biophysically/structurally characterizing primase and its iron-sulfur cluster-containing domain, p58C.


Asunto(s)
ADN Primasa/química , ADN Primasa/metabolismo , Cartilla de ADN/biosíntesis , Replicación del ADN , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Dominio Catalítico , ADN/química , ADN/metabolismo , Humanos , Oxidación-Reducción , ARN/química , ARN/metabolismo , Análisis de Secuencia
13.
Science ; 357(6348)2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28729485

RESUMEN

Baranovskiy et al and Pellegrini argue that, based on structural data, the path for charge transfer through the [4Fe4S] domain of primase is not feasible. Our manuscript presents electrochemical data directly showing charge transport through DNA to the [4Fe4S] cluster of a primase p58C construct and a reversible switch in the DNA-bound signal with oxidation/reduction, which is inhibited by mutation of three tyrosine residues. Although the dispositions of tyrosines differ in different constructs, all are within range for microsecond electron transfer.


Asunto(s)
ADN Primasa/química , Oxidación-Reducción , Transporte Biológico , ADN , Transporte de Electrón , Humanos
14.
Science ; 355(6327)2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28232525

RESUMEN

DNA charge transport chemistry offers a means of long-range, rapid redox signaling. We demonstrate that the [4Fe4S] cluster in human DNA primase can make use of this chemistry to coordinate the first steps of DNA synthesis. Using DNA electrochemistry, we found that a change in oxidation state of the [4Fe4S] cluster acts as a switch for DNA binding. Single-atom mutations that inhibit this charge transfer hinder primase initiation without affecting primase structure or polymerization. Generating a single base mismatch in the growing primer duplex, which attenuates DNA charge transport, inhibits primer truncation. Thus, redox signaling by [4Fe4S] clusters using DNA charge transport regulates primase binding to DNA and illustrates chemistry that may efficiently drive substrate handoff between polymerases during DNA replication.


Asunto(s)
ADN Primasa/química , ADN/metabolismo , Proteínas Hierro-Azufre/química , Transporte Biológico , ADN/biosíntesis , ADN Primasa/genética , Replicación del ADN , Electrólisis , Humanos , Proteínas Hierro-Azufre/genética , Mutación , Oxidación-Reducción , Polimerizacion , Unión Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...