Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2316841121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502706

RESUMEN

We show that nocturnal aversive stimuli presented to mice while they are eating and drinking outside of their safe nest can entrain circadian behaviors, leading to a shift toward daytime activity. We also show that the canonical molecular circadian clock is necessary for fear entrainment and that an intact molecular clockwork in the suprachiasmatic nucleus, the site of the central circadian pacemaker, is necessary but not sufficient to sustain fear entrainment of circadian rhythms. Our results demonstrate that entrainment of a circadian clock by cyclic fearful stimuli can lead to severely mistimed circadian behavior that persists even after the aversive stimulus is removed. Together, our findings support the interpretation that circadian and sleep symptoms associated with fear and anxiety disorders are, in part, the output of a fear-entrained clock, and provide a mechanistic insight into this clock.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Núcleo Supraquiasmático , Ritmo Circadiano , Miedo
3.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461479

RESUMEN

Purkinje cell dysfunction causes movement disorders such as ataxia, however, recent evidence suggests that Purkinje cell dysfunction may also alter sleep regulation. Here, we used an ataxia mouse model generated by silencing Purkinje cell neurotransmission ( L7 Cre ;Vgat fx/fx ) to better understand how cerebellar dysfunction impacts sleep physiology. We focused our analysis on sleep architecture and electrocorticography (ECoG) patterns based on their relevance to extracting physiological measurements during sleep. We found that circadian activity is unaltered in the mutant mice, although their sleep parameters and ECoG patterns are modified. The L7 Cre ;Vgat fx/fx mutant mice have decreased wakefulness and rapid eye movement (REM) sleep, while non-rapid eye movement (NREM) sleep is increased. The mutant mice have an extended latency to REM sleep, which is also observed in human ataxia patients. Spectral analysis of ECoG signals revealed alterations in the power distribution across different frequency bands defining sleep. Therefore, Purkinje cell dysfunction may influence wakefulness and equilibrium of distinct sleep stages in ataxia. Our findings posit a connection between cerebellar dysfunction and disrupted sleep and underscore the importance of examining cerebellar circuit function in sleep disorders. Summary Statement: Utilizing a precise genetic mouse model of ataxia, we provide insights into the cerebellum's role in sleep regulation, highlighting its potential as a therapeutic target for motor disorders-related sleep disruptions.

4.
Commun Biol ; 6(1): 731, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454228

RESUMEN

Thalamo-cortical networks are central to seizures, yet it is unclear how these circuits initiate seizures. We test whether a facial region of the thalamus, the ventral posteromedial nucleus (VPM), is a source of generalized, convulsive motor seizures and if convergent VPM input drives the behavior. To address this question, we devise an in vivo optogenetic mouse model to elicit convulsive motor seizures by driving these inputs and perform single-unit recordings during awake, convulsive seizures to define the local activity of thalamic neurons before, during, and after seizure onset. We find dynamic activity with biphasic properties, raising the possibility that heterogenous activity promotes seizures. Virus tracing identifies cerebellar and cerebral cortical afferents as robust contributors to the seizures. Of these inputs, only microinfusion of lidocaine into the cerebellar nuclei blocks seizure initiation. Our data reveal the VPM as a source of generalized convulsive seizures, with cerebellar input providing critical signals.


Asunto(s)
Convulsiones , Núcleos Talámicos Ventrales , Ratones , Animales , Tálamo , Corteza Cerebral/fisiología , Cerebelo
5.
Adv Neurobiol ; 31: 71-91, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37338697

RESUMEN

Electromyography (EMG) methods allow quantitative analyses of motor function. The techniques include intramuscular recordings that are performed in vivo. However, recording muscle activity in freely moving mice, particularly in models of motor disease, often creates challenges that prevent the acquisition of clean signals. Recording preparations must be stable enough for the experimenter to collect an adequate number of signals for statistical analyses. Instability results in a low signal-to-noise ratio that prohibits proper isolation of EMG signals from the target muscle during the behavior of interest. Such insufficient isolation prevents the analysis of full electrical potential waveforms. In this case, resolving the shape of a waveform to differentiate individual spikes and bursts of muscle activity can be difficult. A common source of instability is an inadequate surgery. Poor surgical techniques cause blood loss, tissue damage, poor healing, encumbered movement, and unstable implantation of the electrodes. Here, we describe an optimized surgical procedure that ensures electrode stability for in vivo muscle recordings. We implement our technique to obtain recordings from agonist and antagonist muscle pairs in the hindlimbs of freely moving adult mice. We validate the stability of our method by holding EMG recordings during dystonic behavior. Our approach is ideal for studying normal and abnormal motor function in actively behaving mice and valuable for recording intramuscular activity when considerable motion is expected.


Asunto(s)
Distonía , Ratones , Animales , Electromiografía/métodos , Músculos , Electrodos , Movimiento
6.
Cells ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36497147

RESUMEN

Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a ß-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through ß1 and ß2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in ß1 and ß2 null mice or Car8wdl/wdl mice lacking ß1 and ß2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through ß-adrenergic receptors and may contribute to tremor therapeutics.


Asunto(s)
Cerebelo , Propranolol , Ratones , Animales , Propranolol/farmacología , Cerebelo/metabolismo , Células de Purkinje , Ataxia , Neuronas/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Biomarcadores de Tumor
7.
Dystonia ; 12022.
Artículo en Inglés | MEDLINE | ID: mdl-36960404

RESUMEN

Converging evidence from structural imaging studies in patients, the function of dystonia-causing genes, and the comorbidity of neuronal and behavioral defects all suggest that pediatric-onset dystonia is a neurodevelopmental disorder. However, to fully appreciate the contribution of altered development to dystonia, a mechanistic understanding of how networks become dysfunctional is required for early-onset dystonia. One current hurdle is that many dystonia animal models are ideally suited for studying adult phenotypes, as the neurodevelopmental features can be subtle or are complicated by broad developmental deficits. Furthermore, most assays that are used to measure dystonia are not suited for developing postnatal mice. Here, we characterize the early-onset dystonia in Ptf1a Cre ;Vglut2 fl/fl mice, which is caused by the absence of neurotransmission from inferior olive neurons onto cerebellar Purkinje cells. We investigate motor control with two paradigms that examine how altered neural function impacts key neurodevelopmental milestones seen in postnatal pups (postnatal day 7-11). We find that Ptf1a Cre ;Vglut2 fl/fl mice have poor performance on the negative geotaxis assay and the surface righting reflex. Interestingly, we also find that Ptf1a Cre ;Vglut2 fl/fl mice make fewer ultrasonic calls when socially isolated from their nests. Ultrasonic calls are often impaired in rodent models of autism spectrum disorders, a condition that can be comorbid with dystonia. Together, we show that these assays can serve as useful quantitative tools for investigating how neural dysfunction during development influences neonatal behaviors in a dystonia mouse model. Our data implicate a shared cerebellar circuit mechanism underlying dystonia-related motor signs and social impairments in mice.

8.
Dystonia ; 12022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37065094

RESUMEN

Dystonia is the third most common movement disorder. It causes debilitating twisting postures that are accompanied by repetitive and sometimes intermittent co- or over-contractions of agonist and antagonist muscles. Historically diagnosed as a basal ganglia disorder, dystonia is increasingly considered a network disorder involving various brain regions including the cerebellum. In certain etiologies of dystonia, aberrant motor activity is generated in the cerebellum and the abnormal signals then propagate through a "dystonia circuit" that includes the thalamus, basal ganglia, and cerebral cortex. Importantly, it has been reported that non-motor defects can accompany the motor symptoms; while their severity is not always correlated, it is hypothesized that common pathways may nevertheless be disrupted. In particular, circadian dysfunction and disordered sleep are common non-motor patient complaints in dystonia. Given recent evidence suggesting that the cerebellum contains a circadian oscillator, displays sleep-stage-specific neuronal activity, and sends robust long-range projections to several subcortical regions involved in circadian rhythm regulation, disordered sleep in dystonia may result from cerebellum-mediated dysfunction of the dystonia circuit. Here, we review the evidence linking dystonia, cerebellar network dysfunction, and cerebellar involvement in sleep. Together, these ideas may form the basis for the development of improved pharmacological and surgical interventions that could take advantage of cerebellar circuitry to restore normal motor function as well as non-motor (sleep) behaviors in dystonia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA