Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Integr Comp Biol ; 63(6): 1111-1126, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37715350

RESUMEN

Ecdysis, transformation from juvenile to adult form in insects, is time-consuming and leaves insects vulnerable to predation. For winged insects, the process of wing expansion during ecdysis, unfurling and expanding the wings, is a critical bottleneck in achieving sexual maturity. Internal and external forces play a role in wing expansion. Vigorous abdominal pumping during wing expansion allows insects to pressurize and inflate their wings, filling them with hemolymph. In addition, many insects adopt expansion-specific postures and, if inhibited, do not expand their wings normally, suggesting that external forces such as gravity may play a role. However, two previous studies over 40 years ago, reported that the forewings of swarming locusts can expand autonomously when removed from the emerging insect and laid flat on a saline solution. Termed "autoexpansion," we replicated previous experiments of autoexpansion on flat liquid media, documenting changes in both wing length and area over time while also focusing on the role of gravity in autoexpansion. Using the North American bird grasshopper Schistocerca americana, we tested four autoexpansion treatments of varying surface tension and hydrophobicity (gravity, deionized water, buffer, and mineral oil) while simultaneously observing and measuring intact, normal wing expansion. Finally, we constructed a simple model of a viscoelastic expanding wing subjected to gravity, to determine whether it could capture aspects of wing expansion. Our data confirmed that wing autoexpansion does occur in S. americana, but autoexpanding wings, especially hindwings, failed to increase to the same final length and area as intact wings. We found that gravity plays an important role in wing expansion, early in the expansion process. Combined with the significant mass increase we documented in intact wings, it suggests that hydraulic pumping of hemolymph into the wings plays an important role in increasing the area of expanding wings, especially in driving expansion of the large, pleated hindwings. Autoexpansion in a non-swarming orthopteran suggests that local cues driving wing autoexpansion may serve a broader purpose, reducing total expansion time and costs by shifting some processes from central to local control. Documenting wing autoexpansion in a widely studied model organism and demonstrating a mathematical model provides a tractable new system for exploring higher level questions about the mechanisms of wing expansion and the implications of autoexpansion, as well as potential bioinspiration for future technologies applicable to micro-air vehicles, space exploration, or medical and prosthetic devices.


Asunto(s)
Saltamontes , Animales , Fenómenos Biomecánicos , Vuelo Animal , Insectos , Alas de Animales
2.
J Insect Sci ; 23(3)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37341727

RESUMEN

The non-native hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), has caused a significant decline of eastern hemlock, Tsuga canadensis L. (Pinales: Pinaceae), and Carolina hemlock, Tsuga caroliniana Engelmann (Pinales: Pinaceae), in eastern North America. Biological control of HWA has focused on the use of 2 Laricobius spp. (Coleoptera: Derodontidae), natural predators of HWA, which require arboreal and subterranean life phases to complete their development. In its subterranean phase, Laricobius spp. are subject to abiotic factors including soil compaction or soil-applied insecticides used to protect hemlock from HWA. This study used 3D X-ray microcomputed tomography (micro-CT) to identify the depth at which Laricobius spp. burrows during its subterranean lifecycle, characterize pupal chamber volume, and determine whether soil compaction had a significant effect on these variables. The mean burrowing depth in the soil of individuals was 27.0 mm ± 14.8 (SD) and 11.4 mm ± 11.8 (SD) at compaction levels of 0.36 and 0.54 g/cm3, respectively. The mean pupal chamber volume was 11.15 mm3 ± 2.8 (SD) and 7.65 mm3 ± 3.5 (SD) in soil compacted at 0.36 and 0.54 g/cm3, respectively. These data show that soil compaction influences burrowing depth and pupal chamber size for Laricobius spp. This information will help us better identify the effect of soil-applied insecticide residues on estivating Laricobius spp. and soil-applied insecticide residues in the field. Additionally, these results demonstrate the utility of 3D micro-CT in assessing subterranean insect activity in future studies.


Asunto(s)
Escarabajos , Hemípteros , Insecticidas , Animales , Pupa , Rayos X , Microtomografía por Rayos X , Conducta Predatoria , Tsuga
3.
Sci Rep ; 13(1): 6298, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072416

RESUMEN

Insect wings must be flexible, light, and strong to allow dynamic behaviors such as flying, mating, and feeding. When winged insects eclose into adults, their wings unfold, actuated hydraulically by hemolymph. Flowing hemolymph in the wing is necessary for functioning and healthy wings, both as the wing forms and as an adult. Because this process recruits the circulatory system, we asked, how much hemolymph is pumped into wings, and what happens to the hemolymph afterwards? Using Brood X cicadas (Magicicada septendecim), we collected 200 cicada nymphs, observing wing transformation over 2 h. Using dissection, weighing, and imaging of wings at set time intervals, we found that within 40 min after emergence, wing pads morphed into adult wings and total wing mass increased to ~ 16% of body mass. Thus, a significant amount of hemolymph is diverted from body to wings to effectuate expansion. After full expansion, in the ~ 80 min after, the mass of the wings decreased precipitously. In fact, the final adult wing is lighter than the initial folded wing pad, a surprising result. These results demonstrate that cicadas not only pump hemolymph into the wings, they then pump it out, producing a strong yet lightweight wing.


Asunto(s)
Hemípteros , Animales , Hemolinfa , Insectos , Alas de Animales , Ninfa , Vuelo Animal
4.
Commun Biol ; 6(1): 313, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959465

RESUMEN

An insect's living systems-circulation, respiration, and a branching nervous system-extend from the body into the wing. Wing hemolymph circulation is critical for hydrating tissues and supplying nutrients to living systems such as sensory organs across the wing. Despite the critical role of hemolymph circulation in maintaining healthy wing function, wings are often considered "lifeless" cuticle, and flows remain largely unquantified. High-speed fluorescent microscopy and particle tracking of hemolymph in the wings and body of the grasshopper Schistocerca americana revealed dynamic flow in every vein of the fore- and hindwings. The global system forms a circuit, but local flow behavior is complex, exhibiting three distinct types: pulsatile, aperiodic, and "leaky" flow. Thoracic wing hearts pull hemolymph from the wing at slower frequencies than the dorsal vessel; however, the velocity of returning hemolymph (in the hindwing) is faster than in that of the dorsal vessel. To characterize the wing's internal flow mechanics, we mapped dimensionless flow parameters across the wings, revealing viscous flow regimes. Wings sustain ecologically important insect behaviors such as pollination and migration. Analysis of the wing circulatory system provides a template for future studies investigating the critical hemodynamics necessary to sustaining wing health and insect flight.


Asunto(s)
Saltamontes , Animales , Fenómenos Biomecánicos , Hemolinfa , Vuelo Animal/fisiología , Insectos/fisiología , Alas de Animales/fisiología
5.
Bioinspir Biomim ; 18(3)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36854192

RESUMEN

Although most binaural organisms locate sound sources using neurological structures to amplify the sounds they hear, some animals use mechanically coupled hearing organs instead. One of these animals, the parasitoid flyOrmia ochracea(O. ochracea), has astoundingly accurate sound localization abilities. It can locate objects in the azimuthal plane with a precision of 2°, equal to that of humans, despite an intertympanal distance of only 0.5 mm, which is less than1/100th of the wavelength of the sound emitted by the crickets that it parasitizes.O. ochraceaaccomplishes this feat via mechanically coupled tympana that interact with incoming acoustic pressure waves to amplify differences in the signals received at the two ears. In 1995, Mileset aldeveloped a model of hearing mechanics inO. ochraceathat represents the tympana as flat, front-facing prosternal membranes, though they lie on a convex surface at an angle from the flies' frontal and transverse planes. The model works well for incoming sound angles less than±30∘but suffers from reduced accuracy (up to 60% error) at higher angles compared to response data acquired fromO. ochraceaspecimens. Despite this limitation, it has been the basis for bio-inspired microphone designs for decades. Here, we present critical improvements to this classic hearing model based on information from three-dimensional reconstructions ofO. ochracea's tympanal organ. We identified the orientation of the tympana with respect to a frontal plane and the azimuthal angle segment between the tympana as morphological features essential to the flies' auditory acuity, and hypothesized a differentiated mechanical response to incoming sound on the ipsi- and contralateral sides that depend on these features. We incorporated spatially-varying model coefficients representing this asymmetric response, making a new quasi-two-dimensional (q2D) model. The q2D model has high accuracy (average errors of under 10%) for all incoming sound angles. This improved biomechanical model may inform the design of new microscale directional microphones and other small-scale acoustic sensor systems.


Asunto(s)
Dípteros , Animales , Humanos , Dípteros/fisiología , Membrana Timpánica/anatomía & histología , Audición/fisiología , Sonido , Acústica
6.
Integr Comp Biol ; 60(5): 1208-1220, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870980

RESUMEN

Insect wings are living, flexible structures composed of tubular veins and thin wing membrane. Wing veins can contain hemolymph (insect blood), tracheae, and nerves. Continuous flow of hemolymph within insect wings ensures that sensory hairs, structural elements such as resilin, and other living tissue within the wings remain functional. While it is well known that hemolymph circulates through insect wings, the extent of wing circulation (e.g., whether flow is present in every vein, and whether it is confined to the veins alone) is not well understood, especially for wings with complex wing venation. Over the last 100 years, scientists have developed experimental methods including microscopy, fluorescence, and thermography to observe flow in the wings. Recognizing and evaluating the importance of hemolymph movement in insect wings is critical in evaluating how the wings function both as flight appendages, as active sensors, and as thermoregulatory organs. In this review, we discuss the history of circulation in wings, past and present experimental techniques for measuring hemolymph, and broad implications for the field of hemodynamics in insect wings.


Asunto(s)
Hemolinfa , Insectos , Alas de Animales , Animales , Fenómenos Biomecánicos , Alas de Animales/irrigación sanguínea
8.
Biol Open ; 8(10)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628142

RESUMEN

The size, shape and structure of insect wings are intimately linked to their ability to fly. However, there are few systematic studies of the variability of the natural patterns in wing morphology across insects. We have assembled a dataset of 789 insect wings with representatives from 25 families and performed a comprehensive computational analysis of their morphology using topological and geometric notions in terms of (i) wing size and contour shape, (ii) vein topology, and (iii) shape and distribution of wing membrane domains. These morphospaces are complementary to existing methods for quantitatively characterizing wing morphology and are likely to be useful for investigating wing function and evolution. This Methods and Techniques paper is accompanied by a set of computational tools for open use.This article has an associated First Person interview with the first author of the paper.

9.
Proc Natl Acad Sci U S A ; 115(40): 9905-9910, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224459

RESUMEN

Insect wings are typically supported by thickened struts called veins. These veins form diverse geometric patterns across insects. For many insect species, even the left and right wings from the same individual have veins with unique topological arrangements, and little is known about how these patterns form. We present a large-scale quantitative study of the fingerprint-like "secondary veins." We compile a dataset of wings from 232 species and 17 families from the order Odonata (dragonflies and damselflies), a group with particularly elaborate vein patterns. We characterize the geometric arrangements of veins and develop a simple model of secondary vein patterning. We show that our model is capable of recapitulating the vein geometries of species from other, distantly related winged insect clades.


Asunto(s)
Vuelo Animal/fisiología , Modelos Biológicos , Odonata/anatomía & histología , Odonata/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Animales
10.
Proc Biol Sci ; 280(1766): 20130697, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23843386

RESUMEN

Classic interpretations of the striated muscle length-tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force-length dependence.


Asunto(s)
Músculo Estriado/fisiología , Animales , Vuelo Animal/fisiología , Insectos/anatomía & histología , Insectos/fisiología , Insectos/ultraestructura , Tono Muscular , Músculo Estriado/anatomía & histología , Músculo Estriado/ultraestructura , Sarcómeros/ultraestructura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA