Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(50): 55915-55924, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36508578

RESUMEN

Within the emerging field of proton-conducting fuel cells, BaZr0.9Y0.1O3-δ (BZY10) is an attractive material due to its high conductivity and stability. The fundamentals of conduction in sintered pellets and thin films heterostructures have been explored in several studies; however, the role of crystallographic orientation, grains, and grain boundaries is poorly understood for proton conduction. This article reports proton conduction in a self-assembled multi-oriented BZY10 thin film grown on top of a (110) NdGaO3 substrate. The multiple orientations are composed of different lattices, which provide a platform to study the lattice-dependent conductivity through different orientations in the vicinity of grain boundary between them and the substrate. The crystalline stacking of each orientation is confirmed by X-ray diffraction analysis and scanning transmission electron microscopy. The transport measurements are carried out under different gas atmospheres. The highest conductivity of 3.08 × 10-3 S cm-1 at 400 °C is found under a wet H2 environment together with an increased lattice parameter of 4.208 Å, while under O2 and Ar environments, the film shows lower conductivity and lattice parameter. Our findings not only demonstrate the role of crystal lattice for conduction properties but also illustrate the importance of self-assembled strategies to achieve high proton conduction in BZY10 thin films.

2.
ACS Appl Mater Interfaces ; 12(5): 6707-6715, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31927907

RESUMEN

Interfaces between materials provide an intellectually rich arena for fundamental scientific discovery and device design. However, the frustration of magnetization and conductivity of perovskite oxide films under reduced dimensionality is detrimental to their device performance, preventing their active low-dimensional application. Herein, by inserting the ultrathin 4d ferromagnetic SrRuO3 layer between ferroelectric BaTiO3 layers to form a sandwich heterostructure, we observe enhanced physical properties in ultrathin SrRuO3 films, including longitudinal conductivity, Curie temperature, and saturated magnetic moment. Especially, the saturated magnetization can be enhanced to ∼3.12 µB/Ru in ultrathin BaTiO3/SrRuO3/BaTiO3 trilayers, which is beyond the theoretical limit of bulk value (2 µB/Ru). This observation is attributed to the synergistic ferroelectric proximity effect (SFPE) at upper and lower BaTiO3/SrRuO3 heterointerfaces, as revealed by the high-resolution lattice structure analysis. This SFPE in dual-ferroelectric interface cooperatively induces ferroelectric-like lattice distortions in RuO6 oxygen octahedra and subsequent spin-state crossover in SrRuO3, which in turn accounts for the observed enhanced magnetization. Besides the fundamental significance of interface-induced spin-lattice coupling, our findings also provide a viable route to the electrical control of magnetic ordering, taking a step toward low-power applications in all-oxide spintronics.

3.
ACS Appl Mater Interfaces ; 11(21): 19584-19595, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31056893

RESUMEN

Manipulation of oxygen vacancies via electric-field-controlled ionic liquid gating has been reported in many model systems within the emergent fields of oxide electronics and iontronics. It is then significant to investigate the oxygen vacancy formation/annihilation and migration across an additional ferroelectric layer with ionic liquid gating. Here, we report that via a combination of ionic liquid and ferroelectric gating, the remote control of oxygen vacancies and magnetic phase transition can be achieved in SrCoO2.5 films capped with an ultrathin ferroelectric BaTiO3 layer at room temperature. The ultrathin BaTiO3 layer acts as an atomic oxygen valve and is semitransparent to oxygen-ion transport due to the competing interaction between vertical electron tunneling and ferroelectric polarization plus surface electrochemical changes in itself, thus resulting in the striking emergence of new mixed-phase SrCoO x. The lateral coexistence of brownmillerite phase SrCoO2.5 and perovskite phase SrCoO3-δ was directly observed by transmission electron microscopy. Besides the fundamental significance of long-range interaction in ionic liquid gating, the ability to control the flow of oxygen ions across the heterointerface by the oxygen valve provides a new approach on the atomic scale for designing multistate memories, sensors, and solid-oxide fuel cells.

4.
ACS Appl Mater Interfaces ; 11(6): 6581-6588, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30663876

RESUMEN

SrFeO x (SFO x) compounds exhibit ionic conduction and oxygen-related phase transformation, having potential applications in solid oxide fuel cells, smart windows, and memristive devices. The phase transformation in SFO x typically requires a thermal annealing process under various pressure conditions, hindering their practical applications. Here, we have achieved a reversible phase transition from brownmillerite (BM) to perovskite (PV) in SrFeO2.5 (SFO2.5) films through ionic liquid (IL) gating. The real-time phase transformation is imaged using in situ high-resolution transmission electron microscopy. The magnetic transition in SFO2.5 is identified by fabricating an assisted La0.7Sr0.3MnO3 (LSMO) bottom layer. The IL-gating-converted PV phase of a SrFeO3-δ (SFO3-δ) layer shows a ferromagnetic-like behavior but applies a huge pinning effect on LSMO magnetic moments, which consequently leads to a prominent exchange bias phenomenon, suggesting an uncompensated helical magnetic structure of SFO3-δ. On the other hand, the suppression of both magnetic and exchange coupling signals for a BM-phased SFO2.5 layer elucidates its fully compensated G-type antiferromagnetic nature. We also demonstrated that the phase transition by IL gating is an effective pathway to tune the resistive switching parameters, such as set, reset, and high/low-resistance ratio in SFO2.5-based resistive random-access memory devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA