Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35840178

RESUMEN

PURPOSE: Dilated cardiomyopathy (DCM) is a primary disorder of the cardiac muscle, characterised by dilatation of the left ventricle and contractile dysfunction. About 50% of DCM cases can be attributed to monogenic causes, whereas the aetiology in the remaining patients remains unexplained. METHODS: We report a family with two brothers affected by severe DCM with onset in the adolescent period. Using exome sequencing, we identified a homozygous premature termination variant in the MYZAP gene in both affected sibs. MYZAP encodes for myocardial zonula adherens protein - a conserved cardiac protein in the intercalated disc structure of cardiomyocytes. RESULTS: The effect of the variant was demonstrated by light and electron microscopy of the heart muscle and immunohistochemical and Western blot analysis of MYZAP protein in the heart tissue of the proband. Functional characterization using patient-derived induced pluripotent stem cell cardiomyocytes revealed significantly lower force and longer time to peak contraction and relaxation consistent with severe contractile dysfunction. CONCLUSION: We provide independent support for the role of biallelic loss-of-function MYZAP variants in dilated cardiomyopathy. This report extends the spectrum of cardiac disease associated with dysfunction of cardiac intercalated disc junction and sheds light on the mechanisms leading to DCM.

2.
EMBO Mol Med ; 13(6): e13074, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33998164

RESUMEN

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


Asunto(s)
Trasplante de Corazón , Miocitos Cardíacos , Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico , Humanos , Mitocondrias , Mutación , Miocitos Cardíacos/metabolismo , Proteómica , Donantes de Tejidos
3.
Stem Cell Reports ; 15(4): 983-998, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053362

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are commercially available, and cardiac differentiation established routine. Systematic evaluation of several control hiPSC-CM is lacking. We investigated 10 different control hiPSC-CM lines and analyzed function and suitability for drug screening. Five commercial and 5 academic hPSC-CM lines were casted in engineered heart tissue (EHT) format. Spontaneous and stimulated EHT contractions were analyzed, and 7 inotropic indicator compounds investigated on 8 cell lines. Baseline contractile force, kinetics, and rate varied widely among the different lines (e.g., relaxation time range: 118-471 ms). In contrast, the qualitative correctness of responses to BayK-8644, nifedipine, EMD-57033, isoprenaline, and digoxin in terms of force and kinetics varied only between 80% and 93%. Large baseline differences between control cell lines support the request for isogenic controls in disease modeling. Variability appears less relevant for drug screening but needs to be considered, arguing for studies with more than one line.


Asunto(s)
Evaluación Preclínica de Medicamentos , Corazón/fisiología , Células Madre Pluripotentes Inducidas/citología , Ingeniería de Tejidos , Calcio/metabolismo , Línea Celular , Espacio Extracelular/química , Fluorescencia , Regulación de la Expresión Génica , Humanos , Contracción Miocárdica , Miocitos Cardíacos/citología
4.
Curr Protoc Stem Cell Biol ; 55(1): e127, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32956561

RESUMEN

The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.


Asunto(s)
Criopreservación/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Línea Celular , Humanos , Control de Calidad , Reproducibilidad de los Resultados
5.
Cardiovasc Res ; 116(14): 2207-2215, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966582

RESUMEN

AIMS: Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has emerged as a global pandemic. SARS-CoV-2 infection can lead to elevated markers of cardiac injury associated with higher risk of mortality. It is unclear whether cardiac injury is caused by direct infection of cardiomyocytes or is mainly secondary to lung injury and inflammation. Here, we investigate whether cardiomyocytes are permissive for SARS-CoV-2 infection. METHODS AND RESULTS: Two strains of SARS-CoV-2 infected human induced pluripotent stem cell-derived cardiomyocytes as demonstrated by detection of intracellular double-stranded viral RNA and viral spike glycoprotein expression. Increasing concentrations of viral RNA are detected in supernatants of infected cardiomyocytes, which induced infections in Caco-2 cell lines, documenting productive infections. SARS-CoV-2 infection and induced cytotoxic and proapoptotic effects associated with it abolished cardiomyocyte beating. RNA sequencing confirmed a transcriptional response to viral infection as demonstrated by the up-regulation of genes associated with pathways related to viral response and interferon signalling, apoptosis, and reactive oxygen stress. SARS-CoV-2 infection and cardiotoxicity was confirmed in a 3D cardiosphere tissue model. Importantly, viral spike protein and viral particles were detected in living human heart slices after infection with SARS-CoV-2. Coronavirus particles were further observed in cardiomyocytes of a patient with coronavirus disease 2019. Infection of induced pluripotent stem cell-derived cardiomyocytes was dependent on cathepsins and angiotensin-converting enzyme 2, and was blocked by remdesivir. CONCLUSION: This study demonstrates that SARS-CoV-2 infects cardiomyocytes in vitro in an angiotensin-converting enzyme 2- and cathepsin-dependent manner. SARS-CoV-2 infection of cardiomyocytes is inhibited by the antiviral drug remdesivir.


Asunto(s)
Apoptosis , COVID-19/virología , Cardiopatías/virología , Miocitos Cardíacos/virología , SARS-CoV-2/patogenicidad , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Apoptosis/efectos de los fármacos , COVID-19/metabolismo , COVID-19/patología , Células CACO-2 , Catepsinas/metabolismo , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Cardiopatías/patología , Interacciones Huésped-Patógeno , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2/efectos de los fármacos , Transducción de Señal , Tratamiento Farmacológico de COVID-19
6.
Toxicol Sci ; 176(1): 103-123, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421822

RESUMEN

Animal models are 78% accurate in determining whether drugs will alter contractility of the human heart. To evaluate the suitability of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for predictive safety pharmacology, we quantified changes in contractility, voltage, and/or Ca2+ handling in 2D monolayers or 3D engineered heart tissues (EHTs). Protocols were unified via a drug training set, allowing subsequent blinded multicenter evaluation of drugs with known positive, negative, or neutral inotropic effects. Accuracy ranged from 44% to 85% across the platform-cell configurations, indicating the need to refine test conditions. This was achieved by adopting approaches to reduce signal-to-noise ratio, reduce spontaneous beat rate to ≤ 1 Hz or enable chronic testing, improving accuracy to 85% for monolayers and 93% for EHTs. Contraction amplitude was a good predictor of negative inotropes across all the platform-cell configurations and of positive inotropes in the 3D EHTs. Although contraction- and relaxation-time provided confirmatory readouts forpositive inotropes in 3D EHTs, these parameters typically served as the primary source of predictivity in 2D. The reliance of these "secondary" parameters to inotropy in the 2D systems was not automatically intuitive and may be a quirk of hiPSC-CMs, hence require adaptations in interpreting the data from this model system. Of the platform-cell configurations, responses in EHTs aligned most closely to the free therapeutic plasma concentration. This study adds to the notion that hiPSC-CMs could add value to drug safety evaluation.


Asunto(s)
Relación Dosis-Respuesta a Droga , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Preparaciones Farmacéuticas , Animales , Humanos
7.
Br J Pharmacol ; 177(13): 3036-3045, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32092149

RESUMEN

BACKGROUND AND PURPOSE: Phosphodiesterases (PDEs) are important regulators of ß-adrenoceptor signalling in the heart. While PDE4 is the most important isoform that regulates ICa,L and force in rodent cardiomyocytes, the dominant isoform in adult human cardiomyocytes is PDE3. EXPERIMENTAL APPROACH: Given the potential of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for biomedical research, this study characterized the contribution of PDE3 and PDE4 isoforms to the regulation of ICa,L and force in hiPSC-CMs in an engineered heart tissue (EHT) model. KEY RESULTS: There was a lower abundance of mRNA for PDE3A and 4A in hiPSC-CM EHT than in non-failing human heart samples. Selective inhibition of PDE3 and 4 with cilostamide and rolipram, respectively, showed that, in hiPSC-CM, PDE4 was the predominant isoform for the regulation of ICa,L (cilostamide: +1.44-fold; rolipram: +1.77-fold). Furthermore, in contrast to cilostamide, rolipram decreased the EC50 of isoprenaline about 15-fold. CONCLUSION AND IMPLICATIONS: The predominance of PDE4 over PDE3 is a peculiarity of hiPSC-CMs and is probably an indicator of immaturity. This finding has implications for the use of hiPSC-CM as pharmacological models to investigate and assess the effects of PDE inhibitors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Adulto , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Humanos , Rolipram/farmacología
8.
Stem Cell Reports ; 14(2): 312-324, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31956082

RESUMEN

Force measurements in ex vivo and engineered heart tissues are well established. Analysis of calcium transients (CaT) is complementary to force, and the combined analysis is meaningful to the study of cardiomyocyte biology and disease. This article describes a model of human induced pluripotent stem cell cardiomyocyte-derived engineered heart tissues (hiPSC-CM EHTs) transduced with the calcium sensor GCaMP6f followed by sequential analysis of force and CaT. Average peak analysis demonstrated the temporal sequence of the CaT preceding the contraction twitch. The pharmacological relevance of the test system was demonstrated with inotropic indicator compounds. Force-frequency relationship was analyzed in the presence of ivabradine (300 nM), which reduced spontaneous frequency and unmasked a positive correlation of force and CaT at physiological human heart beating frequency with stimulation frequency between 0.75 and 2.5 Hz (force +96%; CaT +102%). This work demonstrates the usefulness of combined force/CaT analysis and demonstrates a positive force-frequency relationship in hiPSC-CM EHTs.


Asunto(s)
Señalización del Calcio , Corazón/fisiología , Ingeniería de Tejidos/métodos , Artefactos , Fenómenos Biomecánicos , Señalización del Calcio/efectos de los fármacos , Fluorescencia , Corazón/efectos de los fármacos , Humanos , Movimiento (Física) , Contracción Miocárdica/efectos de los fármacos , Urea/análogos & derivados , Urea/farmacología
9.
Cells ; 9(1)2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968557

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent an unlimited source of human CMs that could be a standard tool in drug research. However, there is concern whether hiPSC-CMs express all cardiac ion channels at physiological level and whether they might express non-cardiac ion channels. In a control hiPSC line, we found large, "noisy" outward K+ currents, when we measured outward potassium currents in isolated hiPSC-CMs. Currents were sensitive to iberiotoxin, the selective blocker of big conductance Ca2+-activated K+ current (IBK,Ca). Seven of 16 individual differentiation batches showed a strong initial repolarization in the action potentials (AP) recorded from engineered heart tissue (EHT) followed by very early afterdepolarizations, sometimes even with consecutive oscillations. Iberiotoxin stopped oscillations and normalized AP shape, but had no effect in other EHTs without oscillations or in human left ventricular tissue (LV). Expression levels of the alpha-subunit (KCa1.1) of the BKCa correlated with the presence of oscillations in hiPSC-CMs and was not detectable in LV. Taken together, individual batches of hiPSC-CMs can express sarcolemmal ion channels that are otherwise not found in the human heart, resulting in oscillating afterdepolarizations in the AP. HiPSC-CMs should be screened for expression of non-cardiac ion channels before being applied to drug research.


Asunto(s)
Potenciales de Acción , Artefactos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Potenciales de Acción/fisiología , Adulto , Línea Celular , Simulación por Computador , Humanos , Péptidos/toxicidad , Ingeniería de Tejidos
10.
Annu Rev Pharmacol Toxicol ; 60: 529-551, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31506008

RESUMEN

In recent decades, drug development costs have increased by approximately a hundredfold, and yet about 1 in 7 licensed drugs are withdrawn from the market, often due to cardiotoxicity. This review considers whether technologies using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could complement existing assays to improve discovery and safety while reducing socioeconomic costs and assisting with regulatory guidelines on cardiac safety assessments. We draw on lessons from our own work to suggest a panel of 12 drugs that will be useful in testing the suitability of hiPSC-CM platforms to evaluate contractility. We review issues, including maturity versus complexity, consistency, quality, and cost, while considering a potential need to incorporate auxiliary approaches to compensate for limitations in hiPSC-CM technology. We give examples on how coupling hiPSC-CM technologies with Cas9/CRISPR genome engineering is starting to be used to personalize diagnosis, stratify risk, provide mechanistic insights, and identify new pathogenic variants for cardiovascular disease.


Asunto(s)
Cardiotoxicidad/prevención & control , Descubrimiento de Drogas/métodos , Miocitos Cardíacos/efectos de los fármacos , Animales , Sistemas CRISPR-Cas/genética , Desarrollo de Medicamentos/métodos , Ingeniería Genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Medicina de Precisión/métodos
12.
Circ Res ; 122(3): e5-e16, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282212

RESUMEN

RATIONALE: There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. OBJECTIVE: Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. METHODS AND RESULTS: MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. CONCLUSIONS: Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models.


Asunto(s)
Contracción Miocárdica , Miocitos Cardíacos/fisiología , Programas Informáticos , Algoritmos , Animales , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/fisiopatología , Fármacos Cardiovasculares/farmacología , Diferenciación Celular , Células Cultivadas , Subunidades beta de la Proteína de Unión al GTP/deficiencia , Subunidades beta de la Proteína de Unión al GTP/genética , Humanos , Síndrome de QT Prolongado/patología , Síndrome de QT Prolongado/fisiopatología , Masculino , Microscopía/métodos , Modelos Cardiovasculares , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Fenotipo , Células Madre Pluripotentes/citología , Conejos , Grabación en Video , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
13.
Nat Protoc ; 12(6): 1177-1197, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28492526

RESUMEN

Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Ingeniería de Tejidos/métodos , Humanos
14.
J Vis Exp ; (122)2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28448053

RESUMEN

Cardiac tissue engineering describes techniques to constitute three dimensional force-generating engineered tissues. For the implementation of these procedures in basic research and preclinical drug development, it is important to develop protocols for automated generation and analysis under standardized conditions. Here, we present a technique to generate engineered heart tissue (EHT) from cardiomyocytes of different species (rat, mouse, human). The technique relies on the assembly of a fibrin-gel containing dissociated cardiomyocytes between elastic polydimethylsiloxane (PDMS) posts in a 24-well format. Three-dimensional, force-generating EHTs constitute within two weeks after casting. This procedure allows for the generation of several hundred EHTs per week and is technically limited only by the availability of cardiomyocytes (0.4-1.0 x 106/EHT). Evaluation of auxotonic muscle contractions is performed in a modified incubation chamber with a mechanical interlock for 24-well plates and a camera placed on top of this chamber. A software controls a camera moved on an XYZ axis system to each EHT. EHT contractions are detected by an automated figure recognition algorithm, and force is calculated based on shortening of the EHT and the elastic propensity and geometry of the PDMS posts. This procedure allows for automated analysis of high numbers of EHT under standardized and sterile conditions. The reliable detection of drug effects on cardiomyocyte contraction is crucial for cardiac drug development and safety pharmacology. We demonstrate, with the example of the hERG channel inhibitor E-4031, that the human EHT system replicates drug responses on contraction kinetics of the human heart, indicating it to be a promising tool for cardiac drug safety screening.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ingeniería de Tejidos/métodos , Animales , Automatización , Dimetilpolisiloxanos , Evaluación Preclínica de Medicamentos/instrumentación , Canal de Potasio ERG1/antagonistas & inhibidores , Fibrina/farmacología , Corazón/efectos de los fármacos , Humanos , Ratones , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ratas
15.
J Environ Sci (China) ; 26(7): 1471-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25079996

RESUMEN

Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable to pesticide linked toxicities, which could lead to diverse pathological conditions. The toxic potential of a pesticide could be determined by their ability to induce genetic mutations and cytotoxicity. Hence, determination of genetic mutation and cytotoxicity of each pesticide is unavoidable to legislate health and safety appraisal about pesticides. The objective of current investigation was to determine the genotoxic and cytotoxic potential of Endosulfan (EN) and Lambda-cyhalothrin (LC); individually and in combination. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was utilized to determine cytotoxicity, while two mutant histidine dependent Salmonella strains (TA98, TA100) were used to determine the mutagenicity of EN and LC. Moreover, mutagenicity assay was conducted with and without S9 to evaluate the effects of metabolic activation on mutagenicity. Even though a dose dependent increase in the number of revertant colonies was detected with EN against both bacterial strains, a highly significant (p<0.05) increase in the mutagenicity was detected in TA98 with S9. In comparison, data obtained from LC revealed less mutagenic potential than EN. Surprisingly, the non-mutagenic individual-concentrations of EN and LC showed dose dependent mutagenicity when combined. Combination of EN and LC synergistically induced mutagenicity both in TA98 and TA100. MTT assay spotlighted comparable dose dependent cytotoxicity effects of both pesticides. Interestingly, the combination of EN and LC produced increased reversion and cytotoxicity at lower doses as compared to each pesticide, concluding that pesticide exposure even at sub-lethal doses can produce cytotoxicity and genetic mutations, which could lead to carcinogenicity.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Endosulfano/toxicidad , Mutágenos/toxicidad , Nitrilos/toxicidad , Plaguicidas/toxicidad , Piretrinas/toxicidad , Pruebas de Carcinogenicidad , Endosulfano/administración & dosificación , Técnicas In Vitro , Pruebas de Mutagenicidad , Nitrilos/administración & dosificación , Piretrinas/administración & dosificación
16.
Environ Toxicol Pharmacol ; 36(2): 501-513, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23806997

RESUMEN

Tuberculosis (TB) is one of the leading infectious causes of death due to single infectious agent after HIV/AIDS. Rifampicin (RIF), Isoniazid (INH), Ethambutol (EMB), Pyrazinamide (PZA) and/or their combinations are extensively prescribed to treat TB. Despite several therapeutic implications, these drugs also produce several toxic effects at cellular level. MTT assay and Ames test were adopted in this study for the determination of cytotoxic and mutagenic potential of these anti-TB drugs. Among all tested drugs, cytotoxic potential of RIF was strongest with highly significant decline (p<0.001) in cell numbers at the concentration of 250µg/ml with LC50 at 325µg/ml, while significant decline (p<0.01) in cell count was observed in INH treated group at the concentration 500µg/ml with LC50 at 1000µg/ml. Moreover, combination RIPE demonstrated significant reduction (p<0.01) in cell number at the concentration of 25-500-500-500µg/ml with LC50 at 60-1200-1200-1200µg/ml. It is apparent from the data that almost all drugs represented identical mutagenic pattern i.e., more significant results were achieved in TA100 with metabolic activation (+S9). RIF proved to be highly mutagenic of all tested drugs with significant mutagenicity (p<0.01) at 0.0525µg/plate against TA98 strain with S9. The combination RIPE exhibited highly significant mutagenic activity (p<0.01) at concentration 0.125-3-3-3µg/plate without S9, while addition of S9 resulted in similar activity at lower doses, i.e., 0.0525-1-1-1µg/plate. It was concluded from the data that all anti-TB drugs possess significant cytotoxic and mutagenic potential, especially in combination, making TB patient more vulnerable to cytotoxic and mutagenic effects of anti-TB drugs, which could produce further health complications in TB patients.


Asunto(s)
Antituberculosos/toxicidad , Mutación , Salmonella/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cricetinae , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Quimioterapia Combinada , Concentración 50 Inhibidora , Pruebas de Mutagenicidad , Medición de Riesgo , Salmonella/genética , Pruebas de Toxicidad/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...