Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203562

RESUMEN

Prochlorococcus, a cyanobacteria genus of the smallest and most abundant oceanic phototrophs, encompasses ecotype strains adapted to high-light (HL) and low-light (LL) niches. To elucidate the adaptive evolution of this genus, we analyzed 40 Prochlorococcus marinus ORFeomes, including two cornerstone strains, MED4 and NATL1A. Employing deep learning with robust statistical methods, we detected new protein family distributions in the strains and identified key genes differentiating the HL and LL strains. The HL strains harbor genes (ABC-2 transporters) related to stress resistance, such as DNA repair and RNA processing, while the LL strains exhibit unique chlorophyll adaptations (ion transport proteins, HEAT repeats). Additionally, we report the finding of variable, depth-dependent endogenous viral elements in the 40 strains. To generate biological resources to experimentally study the HL and LL adaptations, we constructed the ORFeomes of two representative strains, MED4 and NATL1A synthetically, covering 99% of the annotated protein-coding sequences of the two species, totaling 3976 cloned, sequence-verified open reading frames (ORFs). These comparative genomic analyses, paired with MED4 and NATL1A ORFeomes, will facilitate future genotype-to-phenotype mappings and the systems biology exploration of Prochlorococcus ecology.

2.
Mol Plant ; 17(5): 747-771, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38614077

RESUMEN

Macroalgae are multicellular, aquatic autotrophs that play vital roles in global climate maintenance and have diverse applications in biotechnology and eco-engineering, which are directly linked to their multicellularity phenotypes. However, their genomic diversity and the evolutionary mechanisms underlying multicellularity in these organisms remain uncharacterized. In this study, we sequenced 110 macroalgal genomes from diverse climates and phyla, and identified key genomic features that distinguish them from their microalgal relatives. Genes for cell adhesion, extracellular matrix formation, cell polarity, transport, and cell differentiation distinguish macroalgae from microalgae across all three major phyla, constituting conserved and unique gene sets supporting multicellular processes. Adhesome genes show phylum- and climate-specific expansions that may facilitate niche adaptation. Collectively, our study reveals genetic determinants of convergent and divergent evolutionary trajectories that have shaped morphological diversity in macroalgae and provides genome-wide frameworks to understand photosynthetic multicellular evolution in aquatic environments.


Asunto(s)
Genómica , Fotosíntesis , Algas Marinas , Algas Marinas/genética , Fotosíntesis/genética , Filogenia , Microalgas/genética , Microalgas/citología , Evolución Biológica
3.
Antiviral Res ; 217: 105675, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481039

RESUMEN

Human T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability. We have solved the structures of the PDZ binding motif (PBM) of Tax-1 in complex with the PDZ1 and PDZ2 domains of hDLG1 and assessed the binding of 10 million molecules by virtual screening. Among the 19 experimentally confirmed compounds, one systematically inhibited the Tax-1-hDLG1 interaction in different biophysical and cellular assays, as well as HTLV-1 cell-to-cell transmission in a T-cell model. Thus, our work demonstrates that interactions involving Tax-1 PDZ-domains are amenable to small-molecule inhibition, which provides a framework for the design of targeted therapies for HTLV-1-induced diseases.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Humanos , Antivirales/farmacología , Antivirales/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Dominios PDZ , Proteínas , Linfocitos T/metabolismo
5.
Microorganisms ; 10(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36557574

RESUMEN

Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.

6.
Sci Rep ; 12(1): 11293, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788147

RESUMEN

Sabkhas are hypersaline, mineral-rich, supratidal mudflats that harbor microbes that are adapted to high salt concentration. Sabkha microbial diversity is generally studied for their community composition, but less is known about their genetic structure and heterogeneity. In this study, we analyzed a coastal sabkha for its microbial composition using 16S rDNA and whole metagenome, as well as for its population genetic structure. Our 16S rDNA analysis show high alpha diversity in both inner and edge sabkha than outer sabkha. Beta diversity result showed similar kind of microbial composition between inner and edge sabkha, while outer sabkha samples show different microbial composition. At phylum level, Bacteroidetes (~ 22 to 34%), Euryarchaeota (~ 18 to ~ 30%), unclassified bacteria (~ 24 to ~ 35%), Actinobacteria (~ 0.01 to ~ 11%) and Cyanobacteria (less than 1%) are predominantly found in both inside and edge sabkha regions, whereas Proteobacteria (~ 92 to ~ 97%) and Parcubacteria (~ 1 to ~ 2%) are predominately found in outer sabkha. Our 225 metagenomes assembly from this study showed similar bacterial community profile as observed in 16S rDNA-based analysis. From the assembled genomes, we found important genes that are involved in biogeochemical cycles and secondary metabolite biosynthesis. We observed a dynamic, thriving ecosystem that engages in metabolic activity that shapes biogeochemical structure via carbon fixation, nitrogen, and sulfur cycling. Our results show varying degrees of horizontal gene transfers (HGT) and homologous recombination, which correlates with the observed high diversity for these populations. Moreover, our pairwise population differentiation (Fst) for the abundance of species across the salinity gradient of sabkhas identified genes with strong allelic differentiation, lower diversity and elevated nonsynonymous to synonymous ratio of variants, which suggest selective sweeps for those gene variants. We conclude that the process of HGT, combined with recombination and gene specific selection, constitute the driver of genetic variation in bacterial population along a salinity gradient in the unique sabkha ecosystem.


Asunto(s)
Cianobacterias , Salinidad , Bacteroidetes/genética , Cianobacterias/genética , ADN Ribosómico , Ecosistema , Cloruro de Sodio , Cloruro de Sodio Dietético
7.
Antioxidants (Basel) ; 11(6)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35740022

RESUMEN

The spice saffron (Crocus sativus) has anticancer activity in several human tissues, but the molecular mechanisms underlying its potential therapeutic effects are poorly understood. We investigated the impact of safranal, a small molecule secondary metabolite from saffron, on the HCC cell line HepG2 using untargeted metabolomics (HPLC-MS) and transcriptomics (RNAseq). Increases in glutathione disulfide and other biomarkers for oxidative damage contrasted with lower levels of the antioxidants biliverdin IX (139-fold decrease, p = 5.3 × 105), the ubiquinol precursor 3-4-dihydroxy-5-all-trans-decaprenylbenzoate (3-fold decrease, p = 1.9 × 10-5), and resolvin E1 (-3282-fold decrease, p = 45), which indicates sensitization to reactive oxygen species. We observed a significant increase in intracellular hypoxanthine (538-fold increase, p = 7.7 × 10-6) that may be primarily responsible for oxidative damage in HCC after safranal treatment. The accumulation of free fatty acids and other biomarkers, such as S-methyl-5'-thioadenosine, are consistent with safranal-induced mitochondrial de-uncoupling and explains the sharp increase in hypoxanthine we observed. Overall, the dual omics datasets describe routes to widespread protein destabilization and DNA damage from safranal-induced oxidative stress in HCC cells.

9.
J Vis Exp ; (178)2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34927618

RESUMEN

Metabolic models are reconstructed based on an organism's available genome annotation and provide predictive tools to study metabolic processes at a systems-level. Genome-scale metabolic models may include gaps as well as reactions that are unverified experimentally. Reconstructed models of newly isolated microalgal species will result in weaknesses due to these gaps, as there is usually sparse biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology is an effective, high-throughput method that functionally determines cellular metabolic activities in response to a wide array of entry metabolites. Combining the high throughput phenotypic assays with metabolic modeling can allow existing metabolic network models to be rapidly reconstructed or optimized by providing biochemical evidence to support and expand genomic evidence. This work will show the use of PM assays for the study of microalgae by using the green microalgal model species Chlamydomonas reinhardtii as an example. Experimental evidence for over 254 reactions obtained by PM was used in this study to expand and refine a genome-scale C. reinhardtii metabolic network model, iRC1080, by approximately 25 percent. The protocol created here can be used as a basis for functionally profiling the metabolism of other microalgae, including known microalgae mutants and new isolates.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Genoma , Genómica , Redes y Vías Metabólicas
10.
STAR Protoc ; 2(3): 100716, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34401782

RESUMEN

Diatoms are a major group of microalgae that initiate biofouling by surface colonization of human-made underwater structures; however, the involved regulatory pathways remain uncharacterized. Here, we describe a protocol for identifying and validating regulatory genes involved in the morphology shift of the model diatom species Phaeodactylum tricornutum during surface colonization. We also provide a workflow for characterizing biofouling transformants. By using this protocol, gene targets such as GPCR signaling genes could be identified and manipulated to turn off diatom biofouling. For complete information on the generation and use of this protocol, please refer to Fu et al. (2020).


Asunto(s)
Incrustaciones Biológicas/prevención & control , Diatomeas/genética , ARN/aislamiento & purificación , Ascomicetos/genética , Ascomicetos/metabolismo , Diatomeas/metabolismo , Expresión Génica/genética , Redes Reguladoras de Genes/genética , Microalgas/genética , Análisis de Secuencia/métodos
11.
Sci Adv ; 7(19)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33962942

RESUMEN

The endoplasmic reticulum (ER) is a central eukaryotic organelle with a tubular network made of hairpin proteins linked by hydrolysis of guanosine triphosphate nucleotides. Among posttranslational modifications initiated at the ER level, glycosylation is the most common reaction. However, our understanding of the impact of glycosylation on the ER structure remains unclear. Here, we show that exostosin-1 (EXT1) glycosyltransferase, an enzyme involved in N-glycosylation, is a key regulator of ER morphology and dynamics. We have integrated multiomics and superresolution imaging to characterize the broad effect of EXT1 inactivation, including the ER shape-dynamics-function relationships in mammalian cells. We have observed that inactivating EXT1 induces cell enlargement and enhances metabolic switches such as protein secretion. In particular, suppressing EXT1 in mouse thymocytes causes developmental dysfunctions associated with the ER network extension. Last, our data illuminate the physical and functional aspects of the ER proteome-glycome-lipidome structure axis, with implications in biotechnology and medicine.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Animales , Retículo Endoplásmico/metabolismo , Glicosilación , Mamíferos , Ratones , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
12.
Nat Chem Biol ; 17(5): 601-607, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33753927

RESUMEN

Although naturally occurring catalytic RNA molecules-ribozymes-have attracted a great deal of research interest, very few have been identified in humans. Here, we developed a genome-wide approach to discovering self-cleaving ribozymes and identified a naturally occurring ribozyme in humans. The secondary structure and biochemical properties of this ribozyme indicate that it belongs to an unidentified class of small, self-cleaving ribozymes. The sequence of the ribozyme exhibits a clear evolutionary path, from its appearance between ~130 and ~65 million years ago (Ma), to acquiring self-cleavage activity very recently, ~13-10 Ma, in the common ancestors of humans, chimpanzees and gorillas. The ribozyme appears to be functional in vivo and is embedded within a long noncoding RNA belonging to a class of very long intergenic noncoding RNAs. The presence of a catalytic RNA enzyme in lncRNA creates the possibility that these transcripts could function by carrying catalytic RNA domains.


Asunto(s)
Genoma , Gorilla gorilla/genética , Pan paniscus/genética , Pan troglodytes/genética , ARN Catalítico/genética , ARN Largo no Codificante/genética , Animales , Emparejamiento Base , Secuencia de Bases , Cromosomas Humanos Par 15 , Gorilla gorilla/clasificación , Humanos , Cinética , Conformación de Ácido Nucleico , Pan paniscus/clasificación , Pan troglodytes/clasificación , Filogenia , ARN Catalítico/química , ARN Catalítico/clasificación , ARN Catalítico/metabolismo , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Homología de Secuencia de Ácido Nucleico
13.
G3 (Bethesda) ; 11(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561229

RESUMEN

The gray mangrove [Avicennia marina (Forsk.) Vierh.] is the most widely distributed mangrove species, ranging throughout the Indo-West Pacific. It presents remarkable levels of geographic variation both in phenotypic traits and habitat, often occupying extreme environments at the edges of its distribution. However, subspecific evolutionary relationships and adaptive mechanisms remain understudied, especially across populations of the West Indian Ocean. High-quality genomic resources accounting for such variability are also sparse. Here we report the first chromosome-level assembly of the genome of A. marina. We used a previously release draft assembly and proximity ligation libraries Chicago and Dovetail HiC for scaffolding, producing a 456,526,188-bp long genome. The largest 32 scaffolds (22.4-10.5 Mb) accounted for 98% of the genome assembly, with the remaining 2% distributed among much shorter 3,759 scaffolds (62.4-1 kb). We annotated 45,032 protein-coding genes using tissue-specific RNA-seq data in combination with de novo gene prediction, from which 34,442 were associated to GO terms. Genome assembly and annotated set of genes yield a 96.7% and 95.1% completeness score, respectively, when compared with the eudicots BUSCO dataset. Furthermore, an FST survey based on resequencing data successfully identified a set of candidate genes potentially involved in local adaptation and revealed patterns of adaptive variability correlating with a temperature gradient in Arabian mangrove populations. Our A. marina genomic assembly provides a highly valuable resource for genome evolution analysis, as well as for identifying functional genes involved in adaptive processes and speciation.


Asunto(s)
Avicennia , Genoma de Planta , Avicennia/genética , Ambientes Extremos , Genómica , Anotación de Secuencia Molecular , Fenotipo
14.
Cell Host Microbe ; 29(2): 250-266.e8, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33434515

RESUMEN

Being integral primary producers in diverse ecosystems, microalgal genomes could be mined for ecological insights, but representative genome sequences are lacking for many phyla. We cultured and sequenced 107 microalgae species from 11 different phyla indigenous to varied geographies and climates. This collection was used to resolve genomic differences between saltwater and freshwater microalgae. Freshwater species showed domain-centric ontology enrichment for nuclear and nuclear membrane functions, while saltwater species were enriched in organellar and cellular membrane functions. Further, marine species contained significantly more viral families in their genomes (p = 8e-4). Sequences from Chlorovirus, Coccolithovirus, Pandoravirus, Marseillevirus, Tupanvirus, and other viruses were found integrated into the genomes of algal from marine environments. These viral-origin sequences were found to be expressed and code for a wide variety of functions. Together, this study comprehensively defines the expanse of protein-coding and viral elements in microalgal genomes and posits a unified adaptive strategy for algal halotolerance.


Asunto(s)
Microalgas/genética , Microalgas/virología , Proteínas Virales/genética , Virus/genética , Virus/aislamiento & purificación , Ecosistema , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Virus/clasificación , Secuenciación Completa del Genoma
15.
iScience ; 23(8): 101424, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32798972

RESUMEN

Surface colonization allows diatoms, a dominant group of phytoplankton in oceans, to adapt to harsh marine environments while mediating biofoulings to human-made underwater facilities. The regulatory pathways underlying diatom surface colonization, which involves morphotype switching in some species, remain mostly unknown. Here, we describe the identification of 61 signaling genes, including G-protein-coupled receptors (GPCRs) and protein kinases, which are differentially regulated during surface colonization in the model diatom species, Phaeodactylum tricornutum. We show that the transformation of P. tricornutum with constructs expressing individual GPCR genes induces cells to adopt the surface colonization morphology. P. tricornutum cells transformed to express GPCR1A display 30% more resistance to UV light exposure than their non-biofouling wild-type counterparts, consistent with increased silicification of cell walls associated with the oval biofouling morphotype. Our results provide a mechanistic definition of morphological shifts during surface colonization and identify candidate target proteins for the screening of eco-friendly, anti-biofouling molecules.

16.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398372

RESUMEN

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Asunto(s)
Sistemas de Lectura Abierta/genética , Oryza/genética , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Análisis de Secuencia de ADN/métodos , Biología Computacional/métodos , ADN de Plantas/genética , Bases de Datos Genéticas , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
17.
Microb Cell Fact ; 18(1): 209, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791335

RESUMEN

BACKGROUND: Diatoms, which can accumulate large amounts of carotenoids, are a major group of microalgae and the dominant primary producer in marine environments. Phaeodactylum tricornutum, a model diatom species, acquires little silicon for its growth although silicon is known to contribute to gene regulation and play an important role in diatom intracellular metabolism. In this study, we explored the effects of artificial high-silicate medium (i.e. 3.0 mM sodium metasilicate) and LED illumination conditions on the growth rate and pigment accumulation in P. tricornutum, which is the only known species so far that can grow without silicate. It's well known that light-emitting diodes (LEDs) as novel illuminants are emerging to be superior monochromatic light sources for algal cultivation with defined and efficient red and blue lights. RESULTS: Firstly, we cultivated P. tricornutum in a synthetic medium supplemented with either 0.3 mM or 3.0 mM silicate. The morphology and size of diatom cells were examined: the proportion of the oval and triradiate cells decreased while the fusiform cells increased with more silicate addition in high-silicate medium; the average length of fusiform cells also slightly changed from 14.33 µm in 0.3 mM silicate medium to 12.20 µm in 3.0 mM silicate medium. Then we cultivated P. tricornutum under various intensities of red light in combination with the two different levels of silicate in the medium. Higher biomass productivity also achieved in 3.0 mM silicate medium than in 0.3 mM silicate medium under red LED light irradiation at 128 µmol/m2/s or higher light intensity. Increasing silicate reversed the down-regulation of fucoxanthin and chlorophyll a under high red-light illumination (i.e. 255 µmol/m2/s). When doubling the light intensity, fucoxanthin content decreased under red light but increased under combined red and blue (50:50) lights while chlorophyll a content reduced under both conditions. Fucoxanthin accumulation and biomass productivity increased with enhanced red and blue (50:50) lights. CONCLUSION: High-silicate medium and blue light increased biomass and fucoxanthin production in P. tricornutum under high light conditions and this strategy may be beneficial for large-scale production of fucoxanthin in diatoms.


Asunto(s)
Carotenoides/metabolismo , Diatomeas/metabolismo , Luz , Silicatos/metabolismo , Carotenoides/química , Diatomeas/química , Silicatos/química
18.
Curr Opin Biotechnol ; 59: 157-164, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252302

RESUMEN

Microalgae have been investigated for the photosynthetic production of natural products with industrial and biomedical applications. Their rapid growth offers an advantage over higher plants, while their complex metabolic capacities allow for the production of various molecules. Despite their potentials, molecular techniques are underdeveloped in microalgae compared to higher plants, fungi, and bacteria. However, recent advances in genome sequencing, strain development, and genome editing technologies, are providing thrust to enhance research on microalgal species that have branched out from several focal model organisms to encompass a great diversity of species. In this review, we highlight the recent, significant advances in microalgal research, with a focus on the development of new resources that can enhance work on model and non-model species.


Asunto(s)
Microalgas , Bacterias , Productos Biológicos , Edición Génica , Fotosíntesis
19.
iScience ; 11: 450-465, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30684492

RESUMEN

The activities of microalgae support nutrient cycling that helps to sustain aquatic and terrestrial ecosystems. Most microalgal species, especially those from the subtropics, are genomically uncharacterized. Here we report the isolation and genomic characterization of 22 microalgal species from subtropical coastal regions belonging to multiple clades and three from temperate areas. Halotolerant strains including Halamphora, Dunaliella, Nannochloris, and Chloroidium comprised the majority of these isolates. The subtropical-based microalgae contained arrays of methyltransferase, pyridine nucleotide-disulfide oxidoreductase, abhydrolase, cystathionine synthase, and small-molecule transporter domains present at high relative abundance. We found that genes for sulfate transport, sulfotransferase, and glutathione S-transferase activities were especially abundant in subtropical, coastal microalgal species and halophytic species in general. Our metabolomics analyses indicate lineage- and habitat-specific sets of biomolecules implicated in niche-specific biological processes. This work effectively expands the collection of available microalgal genomes by ∼50%, and the generated resources provide perspectives for studying halophyte adaptive traits.

20.
Data Brief ; 22: 137-139, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30581917

RESUMEN

The data presented in this article are related to the research article entitled "Sugar-stimulated CO2 sequestration by the green microalga Chlorella vulgaris" (Fu et al., 2019) [1]. The data describe a rational design and scale-up of LED-based photobioreactors for producing value-added algal biomass while removing waste CO2 from flu gases from power plants. The dataset were created from growth rate experiments for biomass production including direct biomass productivity data, PBR size and setup parameters, medium composition as well as indirect energy cost and overhead in Iceland. A complete economic analysis is formed through a cost breakdown as well as PBR scalability predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...