Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070225

RESUMEN

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Pared Celular/metabolismo , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Peptidoglicano/química , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética
2.
Cell ; 164(1-2): 91-102, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26709046

RESUMEN

Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation.


Asunto(s)
Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Chaetomium/metabolismo , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Alineación de Secuencia
3.
Artículo en Inglés | MEDLINE | ID: mdl-20208148

RESUMEN

In addition to the common use of glutaraldehyde to nonspecifically cross-link protein crystals through lysine residues disposed on the surface of the protein, the use of gentle vapour diffusion of glutaraldehyde offers a convenient way to limit polymerization and to allow slow diffusion throughout the crystal. In the case of trimeric barnase crystals, a specific cross-link was observed between an lysine side chain and an arginine side chain that were spatially disposed at the ideal distance on the protein surface in the three monomers. Here, the direct observation of a specific Lys-Arg cross-link site is reported and a mechanism is proposed for the reaction.


Asunto(s)
Bacillus/enzimología , Reactivos de Enlaces Cruzados/química , Glutaral/química , Ribonucleasas/química , Arginina/química , Proteínas Bacterianas , Cristalografía por Rayos X , Lisina/química , Modelos Moleculares , Estructura Terciaria de Proteína
4.
J Mol Biol ; 363(2): 383-94, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16963083

RESUMEN

Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Glicosiltransferasas/química , Heptosas/química , Estructura Terciaria de Proteína , Adenosina Difosfato/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compuestos de Flúor/química , Compuestos de Flúor/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Heptosas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Alineación de Secuencia
5.
Biochim Biophys Acta ; 1764(5): 903-12, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16600702

RESUMEN

Structural data about the early step of protein denaturation were obtained from cross-linked crystals for two small proteins: barnase and lysozyme. Several denaturant agents like urea, bromoethanol or thiourea were used at increasing concentrations up to a limit leading to crystal disruption (>or=2 to 6 M). Before the complete destruction of the crystal order started, specific binding sites were observed at the protein surfaces, an indication that the preliminary step of denaturation is the disproportion of intermolecular polar bonds to the benefit of the agent "parasiting" the surface. The analysis of the thermal factors first agree with a stabilization effect at low or moderate concentration of denaturants rapidly followed by a destabilization at specific weak points when the number of sites increase (overflooding effect).


Asunto(s)
Muramidasa/química , Ribonucleasas/química , Ribonucleasas/metabolismo , Animales , Bacillus/enzimología , Proteínas Bacterianas , Pollos , Reactivos de Enlaces Cruzados/química , Cristalización , Cristalografía por Rayos X , Etanol/análogos & derivados , Muramidasa/metabolismo , Fosforilación , Conformación Proteica , Desnaturalización Proteica , Temperatura , Tiourea , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...