Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Respir Res ; 25(1): 168, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637766

RESUMEN

BACKGROUND: The COVID-19 pandemic has increased the incidence of ventilator-associated pneumonia (VAP) among critically ill patients. However, a comparison of VAP incidence in COVID-19 and non-COVID-19 cohorts, particularly in a context with a high prevalence of multidrug-resistant (MDR) organisms, is lacking. MATERIAL AND METHODS: We conducted a single-center, mixed prospective and retrospective cohort study comparing COVID-19 patients admitted to the intensive care unit (ICU) of the "Città della Salute e della Scienza" University Hospital in Turin, Italy, between March 2020 and December 2021 (COVID-19 group), with a historical cohort of ICU patients admitted between June 2016 and March 2018 (NON-COVID-19 group). The primary objective was to define the incidence of VAP in both cohorts. Secondary objectives were to evaluate the microbial cause, resistance patters, risk factors and impact on 28 days, ICU and in-hospital mortality, duration of ICU stay, and duration of hospitalization). RESULTS: We found a significantly higher incidence of VAP (51.9% - n = 125) among the 241 COVID-19 patients compared to that observed (31.2% - n = 78) among the 252 NON-COVID-19 patients. The median SOFA score was significantly lower in the COVID-19 group (9, Interquartile range, IQR: 7-11 vs. 10, IQR: 8-13, p < 0.001). The COVID-19 group had a higher prevalence of Gram-positive bacteria-related VAP (30% vs. 9%, p < 0.001), but no significant difference was observed in the prevalence of difficult-to-treat (DTR) or MDR bacteria. ICU and in-hospital mortality in the COVID-19 and NON-COVID-19 groups were 71% and 74%, vs. 33% and 43%, respectively. The presence of COVID-19 was significantly associated with an increased risk of 28-day all-cause hospital mortality (Hazard ratio, HR: 7.95, 95% Confidence Intervals, 95% CI: 3.10-20.36, p < 0.001). Tracheostomy and a shorter duration of mechanical ventilation were protective against 28-day mortality, while dialysis and a high SOFA score were associated with a higher risk of 28-day mortality. CONCLUSION: COVID-19 patients with VAP appear to have a significantly higher ICU and in-hospital mortality risk regardless of the presence of MDR and DTR pathogens. Tracheostomy and a shorter duration of mechanical ventilation appear to be associated with better outcomes.


Asunto(s)
COVID-19 , Neumonía Asociada al Ventilador , Humanos , Neumonía Asociada al Ventilador/diagnóstico , Neumonía Asociada al Ventilador/epidemiología , Neumonía Asociada al Ventilador/microbiología , Estudios Prospectivos , Estudios Retrospectivos , Enfermedad Crítica/epidemiología , Pandemias , COVID-19/epidemiología
2.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458178

RESUMEN

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Asunto(s)
Vesículas Extracelulares , Células Madre Hematopoyéticas , NADP/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/fisiología , Autorrenovación de las Células
4.
Biol Lett ; 19(12): 20230274, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38053363

RESUMEN

Salpa thompsoni is an important grazer in the Southern Ocean and most abundant in the Antarctic Polar Front (APF) region. During recent decades, their distribution expanded southwards. However, it is unclear whether salps can maintain their populations in the high Antarctic regions throughout the year owing to a poor understanding of their physiological responses to changing environmental conditions. We examined gene expression signatures of salps collected in two geographically close regions south of the APF that differed in water mass composition and productivity. The observed differences in the expression of genes related to reproductive, cellular and metabolic processes reflect variations in water temperature and food supply between the two regions studied here. Our study contributes to a better understanding of the physiological responses of S. thompsoni to changing environmental conditions, and how the species may adapt to a changing environment through potential geographical population shifts under future climate change scenarios.


Asunto(s)
Reproducción , Agua , Regiones Antárticas , Expresión Génica
7.
Front Immunol ; 14: 1148595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520523

RESUMEN

Introduction: The Coronavirus Disease 2019 (COVID-19) is mainly a respiratory syndrome that can affect multiple organ systems, causing a variety of symptoms. Among the most common and characteristic symptoms are deficits in smell and taste perception, which may last for weeks/months after COVID-19 diagnosis owing to mechanisms that are not fully elucidated. Methods: In order to identify the determinants of olfactory symptom persistence, we obtained olfactory mucosa (OM) from 21 subjects, grouped according to clinical criteria: i) with persistent olfactory symptoms; ii) with transient olfactory symptoms; iii) without olfactory symptoms; and iv) non-COVID-19 controls. Cells from the olfactory mucosa were harvested for transcriptome analyses. Results and discussion: RNA-Seq assays showed that gene expression levels are altered for a long time after infection. The expression profile of micro RNAs appeared significantly altered after infection, but no relationship with olfactory symptoms was found. On the other hand, patients with persistent olfactory deficits displayed increased levels of expression of genes involved in the inflammatory response and zinc homeostasis, suggesting an association with persistent or transient olfactory deficits in individuals who experienced SARS-CoV-2 infection.

8.
Front Med (Lausanne) ; 10: 1122367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035317

RESUMEN

Background: Mid-regional pro-adrenomedullin (MR-proADM), an endothelium-related peptide, is a predictor of death and multi-organ failure in respiratory infections and sepsis and seems to be effective in identifying COVID-19 severe forms. The study aims to evaluate the effectiveness of MR-proADM in comparison to routine inflammatory biomarkers, lymphocyte subpopulations, and immunoglobulin (Ig) at an intensive care unit (ICU) admission and over time in predicting mortality in patients with severe COVID-19. Methods: All adult patients with COVID-19 pneumonia admitted between March 2020 and June 2021 in the ICUs of a university hospital in Italy were enrolled. MR-proADM, lymphocyte subpopulations, Ig, and routine laboratory tests were measured within 48 h and on days 3 and 7. The log-rank test was used to compare survival curves with MR-proADM cutoff value of >1.5 nmol/L. Predictive ability was compared using the area under the curve (AUC) and 95% confidence interval (CI) of different receiver-operating characteristic curves. Results: A total of 209 patients, with high clinical severity [SOFA 7, IQR 4-9; SAPS II 52, IQR 41-59; median viral pneumonia mortality score (MuLBSTA)-11, IQR 9-13] were enrolled. ICU and overall mortality were 55.5 and 60.8%, respectively. Procalcitonin, lactate dehydrogenase, D-dimer, the N-terminal prohormone of brain natriuretic peptide, myoglobin, troponin, neutrophil count, lymphocyte count, and natural killer lymphocyte count were significantly different between survivors and non-survivors, while lymphocyte subpopulations and Ig were not different in the two groups. MR-proADM was significantly higher in non-survivors (1.17 ± 0.73 vs. 2.31 ± 2.63, p < 0.0001). A value of >1.5 nmol/L was an independent risk factor for mortality at day 28 [odds ratio of 1.9 (95% CI: 1.220-3.060)] after adjusting for age, lactate at admission, SOFA, MuLBSTA, superinfections, cardiovascular disease, and respiratory disease. On days 3 and 7 of the ICU stay, the MR-proADM trend evaluated within 48 h of admission maintained a correlation with mortality (p < 0.0001). Compared to all other biomarkers considered, the MR-proADM value within 48 h had the best accuracy in predicting mortality at day 28 [AUC = 0.695 (95% CI: 0.624-0.759)]. Conclusion: MR-proADM seems to be the best biomarker for the stratification of mortality risk in critically ill patients with COVID-19. The Ig levels and lymphocyte subpopulations (except for natural killers) seem not to be correlated with mortality. Larger, multicentric studies are needed to confirm these findings.

9.
Acta Neuropathol Commun ; 10(1): 189, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36567321

RESUMEN

Regeneration of the neuromuscular junction (NMJ) leverages on extensive exchange of factors released from motor axon terminals (MATs), muscle fibers and perisynaptic Schwann cells (PSCs), among which hydrogen peroxide (H2O2) is a major pro-regenerative signal. To identify critical determinants of NMJ remodeling in response to injury, we performed temporal transcriptional profiling of NMJs from 2 month-old mice during MAT degeneration/regeneration, and cross-referenced the differentially expressed genes with those elicited by H2O2 in SCs. We identified an enrichment in extracellular matrix (ECM) transcripts, including Connective Tissue Growth Factor (Ctgf), which is usually expressed during development. We discovered that Ctgf levels are increased in a Yes-associated protein (YAP)-dependent fashion in response to rapid, local H2O2 signaling generated by stressed mitochondria in the injured sciatic nerve, a finding highlighting the importance of signals triggered by mechanical force to motor nerve repair. Through sequestration of Ctgf or inactivation of H2O2, we delayed the recovery of neuromuscular function by impairing SC migration and, in turn, axon-oriented re-growth. These data indicate that H2O2 and its downstream effector Ctgf are pro-regenerative factors that enable axonal growth, and reveal a striking ECM remodeling process during nerve regeneration upon local H2O2 signaling. Our study identifies key transcriptomic changes at the regenerating NMJ, providing a rich source of pro-regenerative factors with potential for alleviating the consequences of peripheral nerve injuries.


Asunto(s)
Axones , Factor de Crecimiento del Tejido Conjuntivo , Peróxido de Hidrógeno , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Animales , Ratones , Axones/fisiología , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Peróxido de Hidrógeno/metabolismo , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Células de Schwann/metabolismo
10.
Nucleic Acids Res ; 50(21): 12400-12424, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35947650

RESUMEN

Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.


Asunto(s)
Metiltransferasas , Neuronas Motoras , ARN Nuclear Pequeño , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fenotipo , ARN Nuclear Pequeño/metabolismo , Metiltransferasas/metabolismo
11.
Microorganisms ; 10(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36013939

RESUMEN

Candida auris is an emerging healthcare-associated infection that can easily cause dissemination in hospitals through colonizing the skin and contaminating environmental surfaces, especially in Intensive Care Units (ICU). Difficulties with identification of this organism, uncertainty about routes of transmission and antifungals resistance have impacted significantly outbreak detection and management. Here, we describe our experience with colonization/infection of C. auris among critically ill patients, admitted to a referral ICU of a University Hospital, in a transitional period (July 2021-March 2022) between management of non-COVID-19 and COVID-19 patients due to the reconversion of the ICU between two waves. A total of 8 patients presented colonization from C. auris, and two of them developed invasive infection from C. auris. The fungal pathogen was cultured from different sites: the skin (7 isolates), urine (2), respiratory tract (1), blood (1). The median time from admission to first detection is 24 days with 100% of patients requiring mechanical ventilation. All 8 patients received broad-spectrum antibiotic therapy for bacterial infections before identification of C. auris; 62.5% of the patients had prior antifungal exposure; 87.5% received steroids; 37.5% patients used immunomodulatory; and 75% had severe COVID-19 illness prior to C. auris identification. Only two cases (25%) were treated with antifungals as C. auris infections (1 patient for suspected UTI; 1 patient with candidemia). Infection control measures, including rapid microbiological identification, contact isolation, screening of contacts, antisepsis of colonized patients, dedicated equipment, cleaning and disinfection of the environment and subsequent follow-up sampling, remain essential in critically ill patients. Our experience highlights the importance of establishing a multidisciplinary model and bundling of practices for preventing C. auris' spread.

12.
Sci Rep ; 12(1): 11415, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794144

RESUMEN

The krill species Euphausia superba plays a critical role in the food chain of the Antarctic ecosystem. Significant changes in climate conditions observed in the Antarctic Peninsula region in the last decades have already altered the distribution of krill and its reproductive dynamics. A deeper understanding of the adaptation capabilities of this species is urgently needed. The availability of a large body of RNA-seq assays allowed us to extend the current knowledge of the krill transcriptome. Our study covered the entire developmental process providing information of central relevance for ecological studies. Here we identified a series of genes involved in different steps of the krill moulting cycle, in the reproductive process and in sexual maturation in accordance with what was already described in previous works. Furthermore, the new transcriptome highlighted the presence of differentially expressed genes previously unknown, playing important roles in cuticle development as well as in energy storage during the krill life cycle. The discovery of new opsin sequences, specifically rhabdomeric opsins, one onychopsin, and one non-visual arthropsin, expands our knowledge of the krill opsin repertoire. We have collected all these results into the KrillDB2 database, a resource combining the latest annotation of the krill transcriptome with a series of analyses targeting genes relevant to krill physiology. KrillDB2 provides in a single resource a comprehensive catalog of krill genes; an atlas of their expression profiles over all RNA-seq datasets publicly available; a study of differential expression across multiple conditions. Finally, it provides initial indications about the expression of microRNA precursors, whose contribution to krill physiology has never been reported before.


Asunto(s)
Euphausiacea , Animales , Ecosistema , Euphausiacea/fisiología , Opsinas/metabolismo , Alimentos Marinos , Transcriptoma
13.
Pathogens ; 11(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35889963

RESUMEN

Considering the growing prevalence of carbapenem-resistant Gram-negative bacteria (CR-GNB) bloodstream infection (BSI) in intensive care units (ICUs), the identification of specific risk factors and the development of a predictive model allowing for the early identification of patients at risk for CR-Klebsiella pneumoniae, Acinetobacter baumannii or Pseudomonas aeruginosa are essential. In this retrospective case-control study including all consecutive patients showing an episode of BSI in the ICUs of a university hospital in Italy in the period January-December 2016, patients with blood culture positive for CR-GNB pathogens and for any other bacteria were compared. A total of 106 patients and 158 episodes of BSI were identified. CR-GNBs induced BSI in 49 patients (46%) and 58 episodes (37%). Prognosis score and disease severity at admission, parenteral nutrition, cardiovascular surgery prior to admission to ICU, the presence of sepsis and septic shock, ventilation-associated pneumonia and colonization of the urinary or intestinal tract were statistically significant in the univariate analysis. The duration of ventilation and mortality at 28 days were significantly higher among CR-GNB cases. The prognostic model based on age, presence of sepsis, previous cardiovascular surgery, SAPS II, rectal colonization and invasive respiratory infection from the same pathogen showed a C-index of 89.6%. The identified risk factors are in line with the international literature. The proposal prognostic model seems easy to use and shows excellent performance but requires further studies to be validated.

14.
J Clin Med ; 11(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566606

RESUMEN

We evaluated the effectiveness of the Extended Prevalence of Infection in Intensive Care (EPIC) III data collection protocol as an active surveillance tool in the eight Intensive Care Units (ICUs) of the Intensive and Critical Care Department of the University Hospital of Turin. A total of 435 patients were included in a six-day study over 72 ICU beds. 42% had at least one infection: 69% at one site, 26% at two sites and 5% at three or more sites. ICU-acquired infections were the most common (64%), followed by hospital-associated infections (22%) and community-acquired (20%), considering that each patient may have developed more than one infection type. 72% of patients were receiving at least one antibiotic: 48% for prophylaxis and 52% for treatment. Mortality, the length of ICU and hospital stays were 13%, 14 and 29 days, respectively, being all estimated to be significantly different in patients without and with infection (8% vs. 20%; 4 vs. 20 and 11 vs. 50 (p < 0.001). Our data confirm a high prevalence of infections, sepsis and the use of antimicrobials. The repeated punctual prevalence survey seems an effective method to carry out the surveillance of infections and the use of antimicrobials in the ICU. The use of the European Centre for Disease Prevention and Control (ECDC) definitions and the EPIC III protocol seems strategic to allow comparisons with national and international contexts.

16.
Cell Death Dis ; 13(4): 398, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459212

RESUMEN

Cisplatin (CDDP) is commonly used to treat a multitude of tumors including sarcomas, ovarian and cervical cancers. Despite recent investigations allowed to improve chemotherapy effectiveness, the molecular mechanisms underlying the development of CDDP resistance remain a major goal in cancer research. Here, we show that mitochondrial morphology and autophagy are altered in different CDDP resistant cancer cell lines. In CDDP resistant osteosarcoma and ovarian carcinoma, mitochondria are fragmented and closely juxtaposed to the endoplasmic reticulum; rates of mitophagy are also increased. Specifically, levels of the mitophagy receptor BNIP3 are higher both in resistant cells and in ovarian cancer patient samples resistant to platinum-based treatments. Genetic BNIP3 silencing or pharmacological inhibition of autophagosome formation re-sensitizes these cells to CDDP. Our study identifies inhibition of BNIP3-driven mitophagy as a potential therapeutic strategy to counteract CDDP resistance in ovarian carcinoma and osteosarcoma.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Cisplatino , Osteosarcoma , Neoplasias Ováricas , Antineoplásicos/uso terapéutico , Autofagia/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
17.
Bioinformatics ; 38(9): 2648-2650, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35266509

RESUMEN

SUMMARY: We present NewWave, a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA sequencing data. To achieve scalability, NewWave uses mini-batch optimization and can work with out-of-memory data, enabling users to analyze datasets with millions of cells. AVAILABILITY AND IMPLEMENTATION: NewWave is implemented as an open-source R package available through the Bioconductor project at https://bioconductor.org/packages/NewWave/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , RNA-Seq , Secuenciación del Exoma
18.
Crit Care ; 26(1): 34, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123562

RESUMEN

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) has become an established rescue therapy for severe acute respiratory distress syndrome (ARDS) in several etiologies including influenza A H1N1 pneumonia. The benefit of receiving ECMO in coronavirus disease 2019 (COVID-19) is still uncertain. The aim of this analysis was to compare the outcome of patients who received veno-venous ECMO for COVID-19 and Influenza A H1N1 associated ARDS. METHODS: This was a multicenter retrospective cohort study including adults with ARDS, receiving ECMO for COVID-19 and influenza A H1N1 pneumonia between 2009 and 2021 in seven Italian ICU. The primary outcome was any-cause mortality at 60 days after ECMO initiation. We used a multivariable Cox model to estimate the difference in mortality accounting for patients' characteristics and treatment factors before ECMO was started. Secondary outcomes were mortality at 90 days, ICU and hospital length of stay and ECMO associated complications. RESULTS: Data from 308 patients with COVID-19 (N = 146) and H1N1 (N = 162) associated ARDS who had received ECMO support were included. The estimated cumulative mortality at 60 days after initiating ECMO was higher in COVID-19 (46%) than H1N1 (27%) patients (hazard ratio 1.76, 95% CI 1.17-2.46). When adjusting for confounders, specifically age and hospital length of stay before ECMO support, the hazard ratio decreased to 1.39, 95% CI 0.78-2.47. ICU and hospital length of stay, duration of ECMO and invasive mechanical ventilation and ECMO-associated hemorrhagic complications were higher in COVID-19 than H1N1 patients. CONCLUSION: In patients with ARDS who received ECMO, the observed unadjusted 60-day mortality was higher in cases of COVID-19 than H1N1 pneumonia. This difference in mortality was not significant after multivariable adjustment; older age and longer hospital length of stay before ECMO emerged as important covariates that could explain the observed difference. TRIAL REGISTRATION NUMBER: NCT05080933 , retrospectively registered.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Síndrome de Dificultad Respiratoria , Adulto , Anciano , Humanos , Gripe Humana/complicaciones , Gripe Humana/terapia , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos , SARS-CoV-2
19.
Commun Biol ; 5(1): 146, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177756

RESUMEN

Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic mechanisms whereby a set of genes is expressed mono-allelically in order to fine-tune their expression levels. Defects in genomic imprinting have been observed in several neurodevelopmental disorders, in a wide range of tumours and in induced pluripotent stem cells (iPSCs). Single Nucleotide Variants (SNVs) are readily detectable by RNA-sequencing allowing the determination of whether imprinted or X-linked genes are aberrantly expressed from both alleles, although standardised analysis methods are still missing. We have developed a tool, named BrewerIX, that provides comprehensive information about the allelic expression of a large, manually-curated set of imprinted and X-linked genes. BrewerIX does not require programming skills, runs on a standard personal computer, and can analyze both bulk and single-cell transcriptomes of human and mouse cells directly from raw sequencing data. BrewerIX confirmed previous observations regarding the bi-allelic expression of some imprinted genes in naive pluripotent cells and extended them to preimplantation embryos. BrewerIX also identified misregulated imprinted genes in breast cancer cells and in human organoids and identified genes escaping XCI in human somatic cells. We believe BrewerIX will be useful for the study of genomic imprinting and XCI during development and reprogramming, and for detecting aberrations in cancer, iPSCs and organoids. Due to its ease of use to non-computational biologists, its implementation could become standard practice during sample assessment, thus raising the robustness and reproducibility of future studies.


Asunto(s)
Alelos , Genes Ligados a X/genética , Programas Informáticos , Transcriptoma/genética , Animales , Neoplasias de la Mama , Regulación de la Expresión Génica , Humanos , Ratones , Análisis de la Célula Individual
20.
Cell ; 184(22): 5541-5558.e22, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34644528

RESUMEN

Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.


Asunto(s)
Secuencia Conservada , Desarrollo Embrionario/genética , Proteínas Quinasas/metabolismo , Retroelementos/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Secuencia de Bases , Blastocisto/metabolismo , Proliferación Celular , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mamíferos/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Regiones Promotoras Genéticas , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA