Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12402, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811610

RESUMEN

Evaluating the quality of isolated human islets before transplantation is crucial for predicting the success in treating Type 1 diabetes. The current gold standard involves time-intensive in vivo transplantation into diabetic immunodeficient mice. Given the susceptibility of isolated islets to hypoxia, we hypothesized that hypoxia present in islets before transplantation could indicate compromised islet quality, potentially leading to unfavorable outcomes. To test this hypothesis, we analyzed expression of 39 hypoxia-related genes in human islets from 85 deceased donors. We correlated gene expression profiles with transplantation outcomes in 327 diabetic mice, each receiving 1200 islet equivalents grafted into the kidney capsule. Transplantation outcome was post-transplant glycemic control based on area under the curve of blood glucose over 4 weeks. In linear regression analysis, DDIT4 (R = 0.4971, P < 0.0001), SLC2A8 (R = 0.3531, P = 0.0009) and HK1 (R = 0.3444, P = 0.0012) had the highest correlation with transplantation outcome. A multiple regression model of 11 genes increased the correlation (R = 0.6117, P < 0.0001). We conclude that assessing pre-transplant hypoxia in human islets via gene expression analysis is a rapid, viable alternative to conventional in vivo assessments. This approach also underscores the importance of mitigating pre-transplant hypoxia in isolated islets to improve the success rate of islet transplantation.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Animales , Trasplante de Islotes Pancreáticos/métodos , Ratones , Islotes Pancreáticos/metabolismo , Diabetes Mellitus Experimental/terapia , Masculino , Diabetes Mellitus Tipo 1/metabolismo , Hipoxia/metabolismo , Femenino , Hipoxia de la Célula , Persona de Mediana Edad , Glucemia/metabolismo
2.
Am J Transplant ; 24(2): 177-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37813189

RESUMEN

Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained ß cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Ratones , Animales , Técnicas de Cultivo de Célula , Hidrogeles , Insulina , Supervivencia Celular
3.
Cell Transplant ; 30: 9636897211052291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34628956

RESUMEN

Prior to transplantation into individuals with type 1 diabetes, in vitro assays are used to evaluate the quality, function and survival of isolated human islets. In addition to the assessments of these parameters in islet, they can be evaluated by multiparametric morphological scoring (0-10 points) and grading (A, B, C, D, and F) based on islet characteristics (shape, border, integrity, single cells, and diameter). However, correlation between the multiparametric assessment and transplantation outcome has not been fully elucidated. In this study, 55 human islet isolations were scored using this multiparametric assessment. The results were correlated with outcomes after transplantation into immunodeficient diabetic mice. In addition, the multiparametric assessment was compared with oxygen consumption rate of isolated islets as a potential prediction factor for successful transplantations. All islet batches were assessed and found to score: 9 points (n = 18, Grade A), 8 points (n = 19, Grade B), and 7 points (n = 18, Grade B). Islets that scored 9 (Grade A), scored 8 (Grade B) and scored 7 (Grade B) were transplanted into NOD/SCID mice and reversed diabetes in 81.2%, 59.4%, and 33.3% of animals, respectively (P < 0.0001). Islet scoring and grading correlated well with glycemic control post-transplantation (P < 0.0001) and reversal rate of diabetes (P < 0.05). Notably, islet scoring and grading showed stronger correlation with transplantation outcome compared to oxygen consumption rate. Taken together, a multiparametric assessment of isolated human islets was highly predictive of transplantation outcome in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Trasplante de Islotes Pancreáticos/métodos , Animales , Humanos , Ratones , Ratones SCID , Estudios Retrospectivos , Resultado del Tratamiento
4.
Cell Transplant ; 29: 963689720974582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33231091

RESUMEN

Access to functional high-quality pancreatic human islets is critical to advance diabetes research. The Integrated Islet Distribution Program (IIDP), a major source for human islet distribution for over 15 years, conducted a study to evaluate the most advantageous times to ship islets postisolation to maximize islet recovery. For the evaluation, three experienced IIDP Islet Isolation Centers each provided samples from five human islet isolations, shipping 10,000 islet equivalents (IEQ) at four different time periods postislet isolation (no 37°C culture and shipped within 0 to 18 hours; or held in 37°C culture for 18 to 42, 48 to 96, or 144 to 192 hours). A central evaluation center compared samples for islet quantity, quality, and viability for each experimental condition preshipment and postshipment, as well as post 37°C culture 18 to 24 hours after shipment receipt. Additional evaluations included measures of functional potency by static glucose-stimulated insulin release (GSIR), represented as a stimulation index. Comparing the results of the four preshipment holding periods, the greatest IEQ loss postshipment occurred with the shortest preshipment times. Similar patterns emerged when comparing preshipment to postculture losses. In vitro islet function (GSIR) was not adversely impacted by increased tissue culture time. These data indicate that allowing time for islet recovery postisolation, prior to shipping, yields less islet loss during shipment without decreasing islet function.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Preservación de Órganos/métodos , Humanos , Islotes Pancreáticos/citología , Factores de Tiempo
5.
Cell Transplant ; 29: 963689720919444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410459

RESUMEN

In clinical and experimental human pancreatic islet transplantations, establishing pretransplant assessments that accurately predict transplantation outcomes is crucial. Conventional in vitro viability assessment that relies on manual counting of viable islets is a routine pretransplant assessment. However, this method does not correlate with transplantation outcomes; to improve the method, we recently introduced a semi-automated method using imaging software to objectively determine area-based viability. The goal of the present study was to correlate semi-automated viability assessment with posttransplantation outcomes of human islet transplantations in diabetic immunodeficient mice, the gold standard for in vivo functional assessment of isolated human islets. We collected data from 61 human islet isolations and 188 subsequent in vivo mouse transplantations. We assessed islet viability by fluorescein diacetate and propidium iodide staining using both the conventional and semi-automated method. Transplantations of 1,200 islet equivalents under the kidney capsule were performed in streptozotocin-induced diabetic immunodeficient mice. Among the pretransplant variables, including donor factors and post-isolation assessments, viability measured using the semi-automated method demonstrated a strong influence on in vivo islet transplantation outcomes in multivariate analysis. We calculated an optimized cutoff value (96.1%) for viability measured using the semi-automated method and showed a significant difference in diabetes reversal rate for islets with viability above this cutoff (77% reversal) vs. below this cutoff (49% reversal). We performed a detailed analysis to show that both the objective measurement and the improved area-based scoring system, which distinguished between small and large islets, were key features of the semi-automated method that allowed for precise evaluation of viability. Taken together, our results suggest that semi-automated viability assessment offers a promising alternative pretransplant assessment over conventional manual assessment to predict human islet transplantation outcomes.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Trasplante de Islotes Pancreáticos/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Resultado del Tratamiento
6.
Pancreas ; 49(5): 650-654, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32433402

RESUMEN

OBJECTIVES: The aim of this study was to determine whether the size of islets isolated from human donors-measured pretransplant-impacts transplantation outcomes in diabetic mice. METHODS: Human islets (1200 islet equivalents) were transplanted into the kidney capsules of streptozotocin-induced diabetic immunodeficient mice. Data from a total of 174 mice that received islets from 45 isolations were analyzed to evaluate the correlation between pretransplant islet size and posttransplant diabetes reversal. Fluorescent images of islet clusters were used to categorize individual islets by size (small, 50-150 µm; medium, 150-250 µm; large, >250 µm), and the fractions of islets in each category were calculated. RESULTS: The fraction of large islets negatively correlated with diabetes reversal rates. Mice that received islet grafts containing 0% to 5%, 5% to 10%, and more than 10% large islets had diabetes reversal rates of 75%, 61%, and 45%, respectively (P = 0.0112). Furthermore, mice that exhibited diabetes reversal received smaller fractions of large islets than mice that did not (5.5% vs 8.0%, P = 0.0003). Intriguingly, the fractions of medium and small islets did not correlate with diabetes reversal outcomes. CONCLUSIONS: The fraction of large islets is a sensitive predictor of human islet transplantation outcomes in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/cirugía , Supervivencia de Injerto/fisiología , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Animales , Humanos , Ratones Endogámicos NOD , Ratones SCID , Evaluación de Resultado en la Atención de Salud , Estudios Retrospectivos , Trasplante Heterólogo
7.
Transpl Int ; 33(7): 806-818, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198960

RESUMEN

Pancreatic islet transplantation into the liver is an effective treatment for type 1 diabetes but has some critical limitations. The subcutaneous site is a potential alternative transplant site, requiring minimally invasive procedures and allowing frequent graft monitoring; however, hypoxia is a major drawback. Our previous study without scaffolding demonstrated post-transplant graft aggregation in the subcutaneous site, which theoretically exacerbates lethal intra-graft hypoxia. In this study, we introduce a clinically applicable subcutaneous islet transplantation platform using a biodegradable Vicryl mesh scaffold to prevent aggregation in a diabetic rat model. Islets were sandwiched between layers of clinically proven Vicryl mesh within thrombin-fibrin gel. In vitro, the mesh prevented islet aggregation and intra-islet hypoxia, which significantly improved islet viability. In vivo rat syngeneic islet transplantations into a prevascularized subcutaneous pocket demonstrated that the mesh significantly enhanced engraftment, as measured by assays for graft survival and function. Histological examination at 6 weeks showed well-vascularized grafts sandwiched in a flat shape between the mesh layers. The biodegradable mesh was fully absorbed by three months, which alleviated chronic foreign body reaction and fibrosis, and supported long-term graft maintenance. This simple graft shape modification approach is an effective and clinically applicable strategy for improved subcutaneous islet transplantation.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Glucemia , Diabetes Mellitus Experimental/cirugía , Supervivencia de Injerto , Poliglactina 910 , Ratas , Mallas Quirúrgicas
8.
Exp Gerontol ; 128: 110739, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31634542

RESUMEN

Pancreatic islets consist of several endocrine cell types that maintain glucose homeostasis. Type 1 diabetes (T1D) results from autoimmune-mediated destruction of insulin producing beta cells in pancreatic islets. Islet transplantation is a treatment for certain individuals with T1D. Islet transplantation in rodents, as an experimental model of the clinical scenario, requires consistency of islet quantity and quality to obtain reproducible results. In this study, we investigated the yield and function of the isolated islets from rats of different ages. Pancreata were harvested from young (10-20 week-old), intermediate (21-40 week-old) and old (>41 week-old) male rats and islets were isolated using a standard protocol. Islet number, morphometry, viability, function, and metabolism were characterized. Islet yield, normalized to body weight, decreased as a function of increasing donor age. Islets from pancreata from young animals were larger and less fragmented compared to islets from organs from intermediate and older animals. Islet viability following overnight culture was the same for islets derived from young and intermediate aged donors but less for islets from old donors. Glucose-stimulated insulin secretion was decreased in islets from older donors. Islet metabolism following glucose challenge, as measured by oxygen consumption, revealed that islets from old donors were metabolically slower and lagged in response to glucose-stimuli. These data demonstrate that increasing donor age has a negative impact on isolated islet yield and quality.


Asunto(s)
Islotes Pancreáticos/fisiología , Donantes de Tejidos , Factores de Edad , Animales , Peso Corporal , Secreción de Insulina , Masculino , Consumo de Oxígeno , Ratas , Ratas Endogámicas Lew
9.
Transplantation ; 103(2): 299-306, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29781952

RESUMEN

Islet transplantation is a promising treatment for type-1 diabetes; however, donor shortage is a concern. Even when a pancreas is available, low islet yield limits the success of transplantation. Islet culture enables pooling of multiple low-yield isolations into an effective islet mass, but isolated islets rapidly deteriorate under conventional culture conditions. Oxygen (O2) depletion in the islet core, which leads to central necrosis and volume loss, is one of the major reasons for this deterioration. METHODS: To promote long-term culture of human islets in PIM-R medium (used for islet research), we adjusted temperature (12°C, 22°C, and 37°C) and O2 concentration (21% and 50%). We simulated the O2 distribution in islets based on islet O2 consumption rate and dissolved O2 in the medium. We determined the optimal conditions for O2 distribution and volume maintenance in a 2-week culture and assessed viability and insulin secretion compared to noncultured islets. In vivo islet engraftment was assessed by transplantation into diabetic nonobese diabetic-severe combined immunodeficiency mouse kidneys. We validated our results using CMRL 1066 medium (used for clinical islet transplantation). RESULTS: Simulation revealed that 12°C of 50% O2 PIM-R culture supplied O2 effectively into the islet core. This condition maintained islet volume at greater than 90% for 2 weeks. There were no significant differences in viability and function in vitro or diabetic reversal rate in vivo between 2-week cultured and noncultured islets. Similar results were obtained using CMRL 1066. CONCLUSIONS: By optimizing temperature and O2 concentration, we cultured human islets for 2 weeks with minimal loss of volume and function.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Islotes Pancreáticos/citología , Oxígeno/farmacología , Adenosina Trifosfato/farmacología , Animales , Medios de Cultivo , Humanos , Islotes Pancreáticos/fisiología , Ratones , Temperatura
10.
Biofabrication ; 11(1): 015011, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30524058

RESUMEN

Cell transplantation is a promising treatment for complementing lost function by replacing new cells with a desired function, e.g. pancreatic islet transplantation for diabetics. To prevent cell obliteration, oxygen supply is critical after transplantation, especially until the graft is sufficiently re-vascularized. To supply oxygen during this period, we developed a chemical-/electrical-free implantable oxygen transporter that delivers oxygen to the hypoxic graft site from ambient air by diffusion potential. This device is simply structured using a biocompatible silicone-based body that holds islets, connected to a tube that opens outside the body. In computational simulations, the oxygen transporter increased the oxygen level to >120 mmHg within grafts; in contrast, a control device that did not transport oxygen showed <6.5 mmHg. In vitro experiments demonstrated similar results. To test the effectiveness of the oxygen transporter in vivo, we transplanted pancreatic islets, which are susceptible to hypoxia, subcutaneously into diabetic rats. Islets transplanted using the oxygen transporter showed improved graft viability and cellular function over the control device. These results indicate that our oxygen transporter, which is safe and easily fabricated, effectively supplies oxygen locally. Such a device would be suitable for multiple clinical applications, including cell transplantations that require changing a hypoxic microenvironment into an oxygen-rich site.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Trasplante de Islotes Pancreáticos/instrumentación , Islotes Pancreáticos/metabolismo , Oxígeno/metabolismo , Animales , Humanos , Islotes Pancreáticos/química , Trasplante de Islotes Pancreáticos/métodos , Masculino , Oxígeno/química , Ratas Endogámicas Lew
11.
Environ Monit Assess ; 190(6): 350, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29785463

RESUMEN

Forests cannot be managed sustainably without reliable data to inform decisions. National Forest Inventories (NFI) tend to report national statistics, with sub-national stratification based on domestic ecological classification systems. It is becoming increasingly important to be able to report statistics on ecosystems that span international borders, as global change and globalization expand stakeholders' spheres of concern. The state of a transnational ecosystem can only be properly assessed by examining the entire ecosystem. In global forest resource assessments, it may be useful to break national statistics down by ecosystem, especially for large countries. The Inventory and Monitoring Working Group (IMWG) of the North American Forest Commission (NAFC) has begun developing a harmonized North American Forest Database (NAFD) for managing forest inventory data, enabling consistent, continental-scale forest assessment supporting ecosystem-level reporting and relational queries. The first iteration of the database contains data describing 1.9 billion ha, including 677.5 million ha of forest. Data harmonization is made challenging by the existence of definitions and methodologies tailored to suit national circumstances, emerging from each country's professional forestry development. This paper reports the methods used to synchronize three national forest inventories, starting with a small suite of variables and attributes.


Asunto(s)
Conservación de los Recursos Naturales , Bases de Datos Factuales , Monitoreo del Ambiente/métodos , Árboles/crecimiento & desarrollo , Ecosistema , Agricultura Forestal , Bosques , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...