Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(38): 39503-39512, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39346832

RESUMEN

Primary hyperoxalurias (PHs) represent rare diseases associated with disruptions in glyoxylate metabolism within hepatocytes. Impaired glyoxylate detoxification in PH patients results in its accumulation and subsequent conversion into oxalate, a process catalyzed by the hepatic lactate dehydrogenase A enzyme (hLDHA). Targeting this enzyme selectively in the liver using small organic molecules emerges as a potential therapeutic strategy for PH. However, achieving selective hepatic inhibition of hLDHA poses challenges, requiring precise delivery of potential inhibitors into hepatocytes to mitigate adverse effects in other tissues. Our recent efforts focused on the design of polymeric micelle nanocarriers tailored for the selective transport and release of hLDHA inhibitors into liver tissues. In this study, we synthesized and assessed the internalization and disaggregation dynamics of chitosan-based polymeric micelles in both hepatic and nonhepatic cell models using live-cell imaging. Our findings indicate that lactonolactone residues confer internalization capacity to the micelles upon exposure to cells. Moreover, we demonstrated the intracellular disaggregation capacity of these nanocarriers facilitated by the cystamine redox-sensitive linker attached to the polymer. Importantly, no cytotoxic effects were observed throughout the experimental time frame. Finally, our results underscore the higher selectivity of these nanocarriers for hepatic HepG2 cells compared to other nonhepatic cell models.

2.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273691

RESUMEN

The inhibition of the hLDHA (human lactate dehydrogenase A) enzyme has been demonstrated to be of great importance in the treatment of cancer and other diseases, such as primary hyperoxalurias. In that regard, we have designed, using virtual docking screening, a novel family of ethyl pyrimidine-quinolinecarboxylate derivatives (13-18)(a-d) as enhanced hLDHA inhibitors. These inhibitors were synthesised through a convergent pathway by coupling the key ethyl 2-aminophenylquinoline-4-carboxylate scaffolds (7-12), which were prepared by Pfitzinger synthesis followed by a further esterification, to the different 4-aryl-2-chloropyrimidines (VIII(a-d)) under microwave irradiation at 150-170 °C in a green solvent. The values obtained from the hLDHA inhibition were in line with the preliminary of the preliminary docking results, the most potent ones being those with U-shaped disposition. Thirteen of them showed IC50 values lower than 5 µM, and for four of them (16a, 18b, 18c and 18d), IC50 ≈ 1 µM. Additionally, all compounds with IC50 < 10 µM were also tested against the hLDHB isoenzyme, resulting in three of them (15c, 15d and 16d) being selective to the A isoform, with their hLDHB IC50 > 100 µM, and the other thirteen behaving as double inhibitors.


Asunto(s)
Inhibidores Enzimáticos , L-Lactato Deshidrogenasa , Simulación del Acoplamiento Molecular , Pirimidinas , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Relación Estructura-Actividad
3.
Molecules ; 29(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39202966

RESUMEN

The Japanese plum tree (Prunus salicina Lindl.) is mainly cultivated in temperate areas of China and some European countries. Certain amounts of wood (from pruning works) are generated every year from this crop of worldwide commercial significance. The main objective of this work was to value this agricultural woody residue, for which the chemical composition of pruning wood extracts from six Japanese plum cultivars was investigated, and the antiproliferative activity of extracts and pure phenolics present in those extracts was measured. For the chemical characterization, total phenolic content and DPPH radical-scavenging assays and HPLC‒DAD/ESI‒MS analyses were performed, with the procyanidin (-)-ent-epicatechin-(2α→O→7,4α→8)-epicatechin (5) and the propelargonidin (+)-epiafzelechin-(2ß→O→7,4ß→8)-epicatechin (7) being the major components of the wood extracts. Some quantitative differences were found among plum cultivars, and the content of proanthocyanidins ranged from 1.50 (cv. 'Fortune') to 4.44 (cv. 'Showtime') mg/g of dry wood. Regarding the antitumoral activity, eight wood extracts and four phenolic compounds were evaluated in MCF-7 cells after 48 h of induction, showing the wood extract from cv. 'Songold' and (‒)-annphenone (3), the best antiproliferative activity (IC50: 424 µg/mL and 405 µg/mL, respectively).


Asunto(s)
Extractos Vegetales , Madera , Humanos , Madera/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Prunus domestica/química , Fenoles/química , Fenoles/farmacología , Fenoles/análisis , Cromatografía Líquida de Alta Presión , Células MCF-7 , Prunus/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antioxidantes/farmacología , Antioxidantes/química
4.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125027

RESUMEN

A description of new antimicrobial agents suitable for food industries has become necessary, and natural compounds are being considered as promising sources of new active derivatives to be used with the aim of improving food safety. We have previously described desirable antimicrobial and antibiofilm activities against foodborne bacteria by analogs to A-type proanthocyanidins (PACs) with a nitro (NO2) group at carbon 6 of the A-ring. We report herein the synthesis of eight additional analogs with chloro and bromo atoms at the A-ring and the systematic study of their antimicrobial and antioxidant activities in order to evaluate their possible application as biocides or food preservatives, as well as to elucidate new structure-activity relationships. The results from this study show that halogenated analogs to natural A-type proanthocyanidins rise above the nitro derivatives previously reported in their antimicrobial activities. Gram-positive bacteria are the most sensitive to all the analogs and combinations assayed, showing MICs from 10 to 50 µg/mL in most cases, as well as reductions in biofilm formation and the disruption of preformed biofilms of at least 75%. Some structure-activity relationships previously described have also been corroborated. Analogs with just one OH group at the B-ring show better antimicrobial activities than those with two OH groups, and those analogs with two or three OH groups in the whole structure are more active than those with four OH groups. In addition, the analogs with two OH groups at the B-ring and chloro at the A-ring are the most effective when antibiofilm activities are studied, especially at low concentrations.


Asunto(s)
Antiinfecciosos , Antioxidantes , Biopelículas , Industria de Alimentos , Halogenación , Pruebas de Sensibilidad Microbiana , Proantocianidinas , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Proantocianidinas/farmacología , Proantocianidinas/química , Proantocianidinas/síntesis química , Biopelículas/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bacterias Grampositivas/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 719: 150081, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38744071

RESUMEN

Renin-Angiotensin System (RAS) is a peptidergic system, canonically known for its role in blood pressure regulation. Furthermore, a non-canonical RAS regulates pathophysiological phenomena, such as inflammation since it consists of two main axes: the pro-inflammatory renin/(pro)renin receptor ((P)RR) axis, and the anti-inflammatory angiotensin-converting enzyme 2 (ACE2)/Angiotensin-(1-7) (Ang-(1-7))/Mas Receptor (MasR) axis. Few phytochemicals have shown to exert angiotensinergic and anti-inflammatory effects through some of these axes; nevertheless, anti-inflammatory drugs, such as phytocannabinoids have not been studied regarding this subject. Among phytocannabinoids, ß-Caryophyllene stands out as a dietary phytocannabinoid with antiphlogistic activity that possess a unique sesquiterpenoid structure. Although its cannabinergic effect has been studied, its angiotensinergic effect reminds underexplored. This study aims to explore the angiotensinergic effect of ß-Caryophyllene on inflammation and stress at a systemic level. After intranasal Lipopolysaccharide (LPS) installation and oral treatment with ß-Caryophyllene, the concentration and activity of key RAS elements in the serum, such as Renin, ACE2 and Ang-(1-7), along with the stress hormone corticosterone and pro/anti-inflammatory cytokines, were measured in mice serum. The results show that ß-Caryophyllene treatment modified RAS levels by increasing Renin and Ang-(1-7), alongside the reduction of pro-inflammatory cytokines and corticosterone levels. These results indicate that ß-Caryophyllene exhibits angiotensinergic activity in favor of anti-inflammation.


Asunto(s)
Angiotensina I , Inflamación , Lipopolisacáridos , Sesquiterpenos Policíclicos , Sistema Renina-Angiotensina , Animales , Sesquiterpenos Policíclicos/farmacología , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Masculino , Ratones , Sistema Renina-Angiotensina/efectos de los fármacos , Angiotensina I/metabolismo , Sesquiterpenos/farmacología , Antiinflamatorios/farmacología , Fragmentos de Péptidos/metabolismo
6.
Plants (Basel) ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475493

RESUMEN

Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.

7.
Food Funct ; 15(2): 838-852, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38164088

RESUMEN

Olacein (OLA), one of the main secoiridoids derived from extra virgin olive oil (EVOO), has been shown to modulate oxidative and inflammatory responses in various pathological conditions; however, its potential benefit in joint disorders such as rheumatoid arthritis (RA) is unknown. Therefore, this study was designed to evaluate the preventive role of the effects of an OLA-supplemented diet in the murine model of collagen-induced arthritis (CIA), delving into the possible mechanisms and signaling pathways involved. Animals were fed an OLA-enriched preventive diet for 6 weeks prior to CIA induction and until the end of the experimental time course. On day 43 after the first immunization, mice were sacrificed: blood was collected, and paws were histologically and biochemically processed. Dietary OLA prevented collagen-induced rheumatic bone, joint and cartilage conditions. Circulating matrix metalloproteinase (MMP)-3 and proinflammatory cytokine (IL-6, IL-1ß, TNF-α, IL-17) levels were significantly decreased in the joint, as well as MMP-9 and cathepsin-K (CatK) expression in secoiridoid-fed animals. In addition, dietary OLA was able to decrease COX-2, mPGES-1 and iNOS protein expressions and, also, PGE2 levels. The mechanisms possibly involved in these protective effects could be related to the activation of the Nrf-2/HO-1 axis and the inhibition of proinflammatory signaling pathways, including JAK-STAT, MAPKs and NF-κB, involved in the production of inflammatory and oxidative mediators. These results support the interest of OLA, as a nutraceutical intervention, in the management of RA.


Asunto(s)
Aldehídos , Artritis Experimental , Artritis Reumatoide , Fenoles , Ratones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Aceite de Oliva/efectos adversos , FN-kappa B/metabolismo , Dieta , Iridoides
8.
Bioorg Chem ; 144: 107112, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237390

RESUMEN

We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.


Asunto(s)
Antineoplásicos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Quinolonas , Quinolonas/farmacología , Inhibidores de Proteínas Quinasas , Antineoplásicos/química , Modelos Moleculares , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Relación Estructura-Actividad , Estructura Molecular
9.
Biomed Pharmacother ; 165: 115234, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37523982

RESUMEN

Phenolic compounds play a key role in the health benefits of Extra Virgin Olive Oil (EVOO). Among these molecules, the focus has been recently put on (-)-oleocanthal and (-)-oleacein, for which anti-cancer and angiogenesis-related findings have been reported. Here, we explored the modulatory action of (-)-oleocanthal and (-)-oleacein on angiogenesis, the process by which new vessels are created from pre-existent ones, which is directly linked to tumor progression and other pathological conditions. Two in vivo models strongly sustained by angiogenesis, and an in vitro model of endothelial cells to study different steps of angiogenesis, were used. In vivo evidence pointed to the anti-angiogenic effects of both compounds in vivo. In vitro, (-)-oleacein and (-)-oleocanthal inhibited the proliferation, invasion, and tube formation of endothelial cells, and (-)-oleacein significantly repressed migration and induced apoptosis in these cells. Mechanistically, the compounds modulated signaling pathways related to survival and proliferation, all at concentrations of physiological relevance for humans. We propose (-)-oleacein and (-)-oleocanthal as good candidates for angioprevention and for further studies as modulators of angiogenesis in clinical interventions, and as interesting functional claims for the food industry. Chemical compounds studied in this article: Oleocanthal (PubChem CID: 11652416); Oleacein (PubChem CID: 18684078).


Asunto(s)
Células Endoteliales , Fenoles , Humanos , Aceite de Oliva/química , Fenoles/farmacología , Fenoles/análisis , Aldehídos/farmacología
10.
Molecules ; 28(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375401

RESUMEN

Developing new types of effective antimicrobial compounds derived from natural products is of interest for the food industry. Some analogs to A-type proanthocyanidins have shown promising antimicrobial and antibiofilm activities against foodborne bacteria. We report herein the synthesis of seven additional analogs with NO2 group at A-ring and their abilities for inhibiting the growth and the biofilm formation by twenty-one foodborne bacteria. Among them, analog 4 (one OH at B-ring; two OHs at D-ring) showed the highest antimicrobial activity. The best results with these new analogs were obtained in terms of their antibiofilm activities: analog 1 (two OHs at B-ring; one OH at D-ring) inhibited at least 75% of biofilm formation by six strains at all of the concentrations tested, analog 2 (two OHs at B-ring; two OHs at D-ring; one CH3 at C-ring) also showed antibiofilm activity on thirteen of the bacteria tested, and analog 5 (one OH at B-ring; one OH at D-ring) was able to disrupt preformed biofilms in eleven strains. The description of new and more active analogs of natural compounds and the elucidation of their structure-activity relationships may contribute to the active development of new food packaging for preventing biofilm formation and lengthening the food shelf life.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Proantocianidinas , Antibacterianos/farmacología , Proantocianidinas/farmacología , Productos Biológicos/farmacología , Antiinfecciosos/farmacología , Biopelículas , Bacterias , Pruebas de Sensibilidad Microbiana
11.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373073

RESUMEN

Human lactate dehydrogenase (hLDH) is a tetrameric enzyme present in almost all tissues. Among its five different isoforms, hLDHA and hLDHB are the predominant ones. In the last few years, hLDHA has emerged as a therapeutic target for the treatment of several kinds of disorders, including cancer and primary hyperoxaluria. hLDHA inhibition has been clinically validated as a safe therapeutic method and clinical trials using biotechnological approaches are currently being evaluated. Despite the well-known advantages of pharmacological treatments based on small-molecule drugs, few compounds are currently in preclinical stage. We have recently reported the detection of some 2,8-dioxabicyclo[3.3.1]nonane core derivatives as new hLDHA inhibitors. Here, we extended our work synthesizing a large number of derivatives (42-70) by reaction between flavylium salts (27-35) and several nucleophiles (36-41). Nine 2,8-dioxabicyclo[3.3.1]nonane derivatives showed IC50 values lower than 10 µM against hLDHA and better activity than our previously reported compound 2. In order to know the selectivity of the synthesized compounds against hLDHA, their hLDHB inhibitory activities were also measured. In particular, compounds 58, 62a, 65b, and 68a have shown the lowest IC50 values against hLDHA (3.6-12.0 µM) and the highest selectivity rate (>25). Structure-activity relationships have been deduced. Kinetic studies using a Lineweaver-Burk double-reciprocal plot have indicated that both enantiomers of 68a and 68b behave as noncompetitive inhibitors on hLDHA enzyme.


Asunto(s)
Productos Biológicos , Humanos , Cinética , Productos Biológicos/farmacología , Relación Estructura-Actividad , Alcanos , Simulación del Acoplamiento Molecular , Estructura Molecular
12.
Chem Biodivers ; 20(5): e202200931, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017495

RESUMEN

European plum tree (Prunus domestica L.) is cultivated in many countries for its delicious and nutritive fruit and, accordingly, certain amounts of wood (from pruning works) are generated every year. The main objective of this work was to value this agricultural woody residue, for which the chemical composition of pruning wood extracts from four European plum cultivars was investigated, and the human lactate dehydrogenase A (hLDHA) inhibitory activity of plum wood extracts and pure proanthocyanidins present in those extracts was measured. For the chemical characterization, total phenolic content and DPPH radical-scavenging assays and HPLC-DAD/ESI-MS analyses were performed, the procyanidin (-)-ent-epicatechin-(2α→O→7,4α→8)-catechin (4), the phenolic glucoside (-)-annphenone (3) and the flavan-3-ol catechin (1) being the major components of the wood extracts. Some quantitative and qualitative differences were found among plum cultivars, and the content of proanthocyanidins ranged from 1.51 (cv. 'Claudia de Tolosa') to 8.51 (cv. 'De la Rosa') mg g-1 of dry wood. For the hLDHA inhibitory activity, six wood extracts and six proanthocyanidins were evaluated by a UV spectrophotometric assay, compound 4 showing the highest inhibitory activity (IC50 3.2 µM) of this enzyme involved on the excessive production of oxalate in the liver of patients affected by the rare disease Primary Hyperoxaluria.


Asunto(s)
Catequina , Proantocianidinas , Prunus domestica , Humanos , Prunus domestica/química , Proantocianidinas/farmacología , Catequina/farmacología , Madera/química , Extractos Vegetales/química , Frutas/química
13.
Food Funct ; 13(21): 11334-11341, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36254591

RESUMEN

Olive oil is a key component of the highly cardiovascular protective Mediterranean diet. (-)-Oleocanthal (OLC) is one of the most interesting phenolics present in virgin olive oil, and is formed from secoiridoid ligustroside during the processing of olives to yield the oil. Anti-inflammatory and anti-oxidant properties were identified shortly after OLC isolation, followed by the discovery of anti-tumor activities in a few non-hematopoietic cell lineages. Because of the scarcity of tissues potentially targeted by OLC analyzed so far and the unresolved mechanism(s) for OLC anti-tumor properties, we used a panel of 17 cell lines belonging to 11 tissue lineages to carry out a detailed examination of targets and pathways leading to cell growth inhibition and death. We found that OLC inhibits cell proliferation and induces apoptotic death as revealed by sub-G1 cell cycle analyses and Annexin-V staining in all lineages analyzed except lung carcinoma cell lines. Hematopoietic tumor cell lines, untested until now, were the most sensitive to OLC treatment, whereas non-transformed cells were significantly resistant to cell death. The specificity of OLC-mediated caspase activation was confirmed by blocking experiments and the use of transfectants overexpressing anti apoptotic genes. OLC triggers typical mediators of the intrinsic apoptotic pathway such as production of reactive oxygen species and mitochondrial membrane depolarization (Δψm). Complete blockade of caspases, however, did not result in parallel abrogation of Annexin-V staining, thus suggesting that complex mechanisms are involved in triggering OLC-mediated cell death. Our results demonstrate that OLC preferentially targets hematopoietic tumor cell lines and support that cell death is mediated by caspase-dependent and independent mechanisms.


Asunto(s)
Caspasas , Neoplasias Hematológicas , Humanos , Caspasas/metabolismo , Monoterpenos Ciclopentánicos , Aceite de Oliva/análisis , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Anexinas , Caspasa 3/metabolismo
14.
Bioorg Chem ; 129: 106127, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36113265

RESUMEN

Human lactate dehydrogenase A (hLDHA) is one of the main enzymes involved in the pathway of oxalate synthesis in human liver and seems to contribute to the pathogenesis of disorders with endogenous oxalate overproduction, such as primary hyperoxaluria (PH), a rare life-threatening genetic disease. Recent published results on the knockdown of LDHA gene expression as a safe strategy to ameliorate oxalate build-up in PH patients are encouraging for an approach of hLDHA inhibition by small molecules as a potential pharmacological treatment. Thus, we now report on the synthesis and hLDHA inhibitory activity of a new family of compounds with 2,8-dioxabicyclo[3.3.1]nonane core (23-42), a series of twenty analogues to A-type proanthocyanidin natural products. Nine of them (25-27, 29-34) have shown IC50 values in the range of 8.7-26.7 µM, based on a UV spectrophotometric assay, where the hLDHA inhibition is measured according to the decrease in absorbance of the cofactor ß-NADH (340 nm). Compounds 25, 29, and 31 were the most active hLDHA inhibitors. In addition, the inhibitory activities of those nine compounds against the hLDHB isoform were also evaluated, finding that all of them were more selective inhibitors of hLDHA versus hLDHB. Among them, compounds 32 and 34 showed the highest selectivity. Moreover, the most active hLDHA inhibitors (25, 29, 31) were evaluated for their ability to decrease the oxalate production by hyperoxaluric mouse hepatocytes (PH1, PH2 and PH3) in vitro, and the relative oxalate output at 24 h was 16% and 19 % for compounds 25 and 31, respectively, in Hoga1-/- mouse primary hepatocyte cells (a model for PH3). These values improve those of the reference compound used (stiripentol). Compounds 25 and 31 have in common the presence of two hydroxyl groups at rings B and D and an electron-withdrawing group (NO2 or Br) at ring A, pointing to the structural features to be taken into account in future structural optimization.


Asunto(s)
Hiperoxaluria Primaria , Ratones , Animales , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/metabolismo , Hiperoxaluria Primaria/patología , Lactato Deshidrogenasa 5 , Oxalatos/metabolismo , Alcanos
15.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35890090

RESUMEN

A battery of novel pyrimidine-quinolone hybrids was designed by docking scaffold replacement as lactate dehydrogenase A (hLDHA) inhibitors. Structures with different linkers between the pyrimidine and quinolone scaffolds (10-21 and 24−31) were studied in silico, and those with the 2-aminophenylsulfide (U-shaped) and 4-aminophenylsulfide linkers (24−31) were finally selected. These new pyrimidine-quinolone hybrids (24−31)(a−c) were easily synthesized in good to excellent yields by a green catalyst-free microwave-assisted aromatic nucleophilic substitution reaction between 3-(((2/4-aminophenyl)thio)methyl)quinolin-2(1H)-ones 22/23(a−c) and 4-aryl-2-chloropyrimidines (1−4). The inhibitory activity against hLDHA of the synthesized hybrids was evaluated, resulting IC50 values of the U-shaped hybrids 24−27(a−c) much better than the ones of the 1,4-linked hybrids 28−31(a−c). From these results, a preliminary structure−activity relationship (SAR) was established, which enabled the design of novel 1,3-linked pyrimidine-quinolone hybrids (33−36)(a−c). Compounds 35(a−c), the most promising ones, were synthesized and evaluated, fitting the experimental results with the predictions from docking analysis. In this way, we obtained novel pyrimidine-quinolone hybrids (25a, 25b, and 35a) with good IC50 values (<20 µM) and developed a preliminary SAR.

16.
Mol Cell Oncol ; 9(1): 2044263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340790

RESUMEN

Phenolic compounds derived from olive oil have beneficial health properties against cancer, neurodegenerative, and metabolic diseases. Therefore, there are discrepancies in their impact on mitochondrial function that result in changes in oxidative capacity, mitochondrial respiration, and energetic demands. This review focuses on the versatile role of oleuropein, a potent antioxidant that regulates the AMPK/SIRT1/mTOR pathway to modulate autophagy/mitophagy and maintain metabolic homeostasis.

17.
Chem Biodivers ; 19(2): e202100807, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35043548

RESUMEN

Cinnamtannin B-1 (C-B1) is a commercially-available trimeric A-type procyanidin with remarkable cellular actions mainly derived from its high radical scavenging activity. C-B1 is the main phenolic compound of laurel wood, which has previously been isolated by a combination of conventional chromatographic techniques. The first aim of this work was to find laurel trees containing as much C-B1 as possible, and learn about the influence of variables, such as gender and harvest time, on the production of C-B1 by the tree. It was found that all studied trees tend to give higher C-B1 percentages in the May-July period, from 6 % to 18 %, and lower ones around March (spring) and November (fall), from 1 % to 8 %. In a general way, it also seems that the female trees tend to produce a bit more C-B1 (from 2.8 % to 17.3 %) than male ones (from 1.7 % to 13.4 %). In addition, eight minor phenolic compounds [(-)-ent-catechin (1), (-)-ent-epicatechin-(4α→8)-ent-epicatechin (2), (epi)catechin-(4→8)-(epi)afzelechin-(4→8)-(epi)catechin (3), (+)-epiafzelechin-(4ß→8)-epicatechin (4), (-)-epicatechin (5), (-)-afzelechin-(4α→8)-epicatechin (6), (epi)afzelechin-(4→8)-(epi)afzelechin-(4→8)-(epi)catechin (7) and (+)-epicatechin-(4ß→8,2ß→O-7)-epicatechin-(4ß→8)-catechin (C-D1)] were found and quantified in the ethyl acetate extract of the wood samples. The second aim of this work was to improve the recovery of C-B1 from laurel wood. The use of the fast centrifugal partition chromatography (FCPC) technique has allowed for a recovery of 96 % of a technical-grade C-B1 (64 % in a previous protocol using conventional column chromatography on silica gel and size-exclusion chromatography).


Asunto(s)
Catequina , Laurus , Proantocianidinas , Catequina/química , Laurus/química , Proantocianidinas/química , Estaciones del Año , Madera/química
18.
J Pers Med ; 11(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513899

RESUMEN

Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.

19.
J Agric Food Chem ; 68(31): 8104-8118, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32633514

RESUMEN

Proanthocyanidins (PACs) are oligomers or polymers composed of units of flavanols. A-type PACs are a subclass of PACs characterized by the presence of at least a double linkage between two consecutive monomers of flavanol. These A-type PACs are found in some fruits and spices and possess potential health benefits as a result of their interesting biological activities, and consequently, their isolation and synthesis have given rise to great interest in the past. This review summarizes the synthetic efforts made to obtain both naturally occurring A-type PACs and their structurally simplified analogues. Most of the synthetic protocols reported involve the addition of a π-nucleophilic molecule over a molecule with two electrophilic carbons, such as a chalcone, a flavylium salt, or a flavanol derivative, among others. Synthesis of A-type PACs remains an issue at a very early stage of development compared to that of PACs with single linkages between monomers (B-type PACs), but the advances that are taking place in the last few years point to a significant development of the subject in the near future.


Asunto(s)
Técnicas de Química Sintética/métodos , Proantocianidinas/síntesis química , Estructura Molecular , Proantocianidinas/química
20.
Eur J Pharm Biopharm ; 152: 327-339, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32473289

RESUMEN

Wound healing is a complex and costly public health problem that should be timely addressed to achieve a rapid and adequate tissue repair avoiding or even eliminating potential pathogenic infection. Chronic infected non-healing wounds represent a serious concern for health care systems. Efficient wound dressings with tailored therapy having the best response and highest safety margin for the management of chronic non-healing wounds are still needed. The use of novel wound dressing materials has emerged as a promising tool to fulfil these requirements. In this work, asymmetric electrospun polycaprolactone (PCL)-based nanofibers (NFs) were decorated with electrosprayed poly(lactic-co-glycolic acid) microparticles (PLGA MPs) containing the natural antibacterial compound thymol (THY) in order to obtain drug eluting antimicrobial dressings having sustained release. The synthesized dressings successfully inhibited the in vitro growth of Staphylococcus aureus ATCC 25923, showing also at the same doses cytocompatibility on human dermal fibroblasts and keratinocyte cultures after treatment for 24 h, which was not observed when using free thymol. An in vivo murine excisional wound splinting model, followed by the experimental infection of the wounds with S. aureus and their treatment with the synthesized dressings, pointed to the reduction of the bacterial load in wounds after 7 days, though the total elimination of the infection was not reached. The findings indicated the relevance of the direct contact between the dressings and the bacteria, highlighting the need to tune their design considering the wound surface and the nature of the antimicrobial cargo contained.


Asunto(s)
Antibacterianos/farmacología , Preparaciones de Acción Retardada/farmacología , Timol/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Vendajes , Línea Celular , Preparaciones de Acción Retardada/química , Fibroblastos/efectos de los fármacos , Fibroblastos/microbiología , Humanos , Masculino , Ratones , Nanofibras/química , Poliésteres/química , Piel/efectos de los fármacos , Piel/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Timol/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...