Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Eur Heart J ; 44(42): 4448-4457, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37611115

RESUMEN

BACKGROUND AND AIMS: Effervescent formulations of paracetamol containing sodium bicarbonate have been reported to associate with increased blood pressure and a higher risk of cardiovascular diseases and all-cause mortality. Given the major implications of these findings, the reported associations were re-examined. METHODS: Using linked electronic health records data, a cohort of 475 442 UK individuals with at least one prescription of paracetamol, aged between 60 and 90 years, was identified. Outcomes in patients taking sodium-based paracetamol were compared with those taking non-sodium-based formulations of the same. Using a deep learning approach, associations with systolic blood pressure (SBP), major cardiovascular events (myocardial infarction, heart failure, and stroke), and all-cause mortality within 1 year after baseline were investigated. RESULTS: A total of 460 980 and 14 462 patients were identified for the non-sodium-based and sodium-based paracetamol exposure groups, respectively (mean age: 74 years; 64% women). Analysis revealed no difference in SBP [mean difference -0.04 mmHg (95% confidence interval -0.51, 0.43)] and no association with major cardiovascular events [relative risk (RR) 1.03 (0.91, 1.16)]. Sodium-based paracetamol showed a positive association with all-cause mortality [RR 1.46 (1.40, 1.52)]. However, after further accounting of other sources of residual confounding, the observed association attenuated towards the null [RR 1.08 (1.01, 1.16)]. Exploratory analyses revealed dysphagia and related conditions as major sources of uncontrolled confounding by indication for this association. CONCLUSIONS: This study does not support previous suggestions of increased SBP and an elevated risk of cardiovascular events from short-term use of sodium bicarbonate paracetamol in routine clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Infarto del Miocardio , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Presión Sanguínea , Hipertensión/complicaciones , Acetaminofén/efectos adversos , Antihipertensivos/uso terapéutico , Sodio , Bicarbonato de Sodio/farmacología , Infarto del Miocardio/complicaciones
2.
Sci Rep ; 13(1): 11478, 2023 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455284

RESUMEN

Diabetes is a heterogenous, multimorbid disorder with a large variation in manifestations, trajectories, and outcomes. The aim of this study is to validate a novel machine learning method for the phenotyping of diabetes in the context of comorbidities. Data from 9967 multimorbid patients with a new diagnosis of diabetes were extracted from Clinical Practice Research Datalink. First, using BEHRT (a transformer-based deep learning architecture), the embeddings corresponding to diabetes were learned. Next, topological data analysis (TDA) was carried out to test how different areas in high-dimensional manifold correspond to different risk profiles. The following endpoints were considered when profiling risk trajectories: major adverse cardiovascular events (MACE), coronary artery disease (CAD), stroke (CVA), heart failure (HF), renal failure (RF), diabetic neuropathy, peripheral arterial disease, reduced visual acuity and all-cause mortality. Kaplan Meier curves were plotted for each derived phenotype. Finally, we tested the performance of an established risk prediction model (QRISK) by adding TDA-derived features. We identified four subgroups of patients with diabetes and divergent comorbidity patterns differing in their risk of future cardiovascular, renal, and other microvascular outcomes. Phenotype 1 (young with chronic inflammatory conditions) and phenotype 2 (young with CAD) included relatively younger patients with diabetes compared to phenotypes 3 (older with hypertension and renal disease) and 4 (older with previous CVA), and those subgroups had a higher frequency of pre-existing cardio-renal diseases. Within ten years of follow-up, 2592 patients (26%) experienced MACE, 2515 patients (25%) died, and 2020 patients (20%) suffered RF. QRISK3 model's AUC was augmented from 67.26% (CI 67.25-67.28%) to 67.67% (CI 67.66-67.69%) by adding specific TDA-derived phenotype and the distances to both extremities of the TDA graph improving its performance in the prediction of CV outcomes. We confirmed the importance of accounting for multimorbidity when risk stratifying heterogenous cohort of patients with new diagnosis of diabetes. Our unsupervised machine learning method improved the prediction of clinical outcomes.


Asunto(s)
Diabetes Mellitus , Aprendizaje Automático no Supervisado , Humanos , Diabetes Mellitus/epidemiología , Comorbilidad , Análisis de Datos , Enfermedades Cardiovasculares/epidemiología , Medición de Riesgo , Enfermedades Renales/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Fenotipo
3.
Heart ; 109(16): 1216-1222, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37080767

RESUMEN

OBJECTIVE: In individuals with complex underlying health problems, the association between systolic blood pressure (SBP) and cardiovascular disease is less well recognised. The association between SBP and risk of cardiovascular events in patients with chronic obstructive pulmonary disease (COPD) was investigated. METHODS AND ANALYSIS: In this cohort study, 39 602 individuals with a diagnosis of COPD aged 55-90 years between 1990 and 2009 were identified from validated electronic health records (EHR) in the UK. The association between SBP and risk of cardiovascular end points (composite of ischaemic heart disease, heart failure, stroke and cardiovascular death) was analysed using a deep learning approach. RESULTS: In the selected cohort (46.5% women, median age 69 years), 10 987 cardiovascular events were observed over a median follow-up period of 3.9 years. The association between SBP and risk of cardiovascular end points was found to be monotonic; the lowest SBP exposure group of <120 mm Hg presented nadir of risk. With respect to reference SBP (between 120 and 129 mm Hg), adjusted risk ratios for the primary outcome were 0.99 (95% CI 0.93 to 1.05) for SBP of <120 mm Hg, 1.02 (0.97 to 1.07) for SBP between 130 and 139 mm Hg, 1.07 (1.01 to 1.12) for SBP between 140 and 149 mm Hg, 1.11 (1.05 to 1.17) for SBP between 150 and 159 mm Hg and 1.16 (1.10 to 1.22) for SBP ≥160 mm Hg. CONCLUSION: Using deep learning for modelling EHR, we identified a monotonic association between SBP and risk of cardiovascular events in patients with COPD.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Femenino , Anciano , Masculino , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Hipertensión/diagnóstico , Estudios de Cohortes , Factores de Riesgo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Factores de Riesgo de Enfermedad Cardiaca , Antihipertensivos/uso terapéutico
4.
Hypertension ; 80(3): 598-607, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36583386

RESUMEN

BACKGROUND: Whether the association between systolic blood pressure (SBP) and risk of cardiovascular disease is monotonic or whether there is a nadir of optimal blood pressure remains controversial. We investigated the association between SBP and cardiovascular events in patients with diabetes across the full spectrum of SBP. METHODS: A cohort of 49 000 individuals with diabetes aged 50 to 90 years between 1990 and 2005 was identified from linked electronic health records in the United Kingdom. Associations between SBP and cardiovascular outcomes (ischemic heart disease, heart failure, stroke, and cardiovascular death) were analyzed using a deep learning approach. RESULTS: Over a median follow-up of 7.3 years, 16 378 cardiovascular events were observed. The relationship between SBP and cardiovascular events followed a monotonic pattern, with the group with the lowest baseline SBP of <120 mm Hg exhibiting the lowest risk of cardiovascular events. In comparison to the reference group with the lowest SBP (<120 mm Hg), the adjusted risk ratio for cardiovascular disease was 1.03 (95% CI, 0.97-1.10) for SBP between 120 and 129 mm Hg, 1.05 (0.99-1.11) for SBP between 130 and 139 mm Hg, 1.08 (1.01-1.15) for SBP between 140 and 149 mm Hg, 1.12 (1.03-1.20) for SBP between 150 and 159 mm Hg, and 1.19 (1.09-1.28) for SBP ≥160 mm Hg. CONCLUSIONS: Using deep learning modeling, we found a monotonic relationship between SBP and risk of cardiovascular outcomes in patients with diabetes, without evidence of a J-shaped relationship.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Hipertensión , Humanos , Presión Sanguínea , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Hipertensión/epidemiología , Estudios Prospectivos , Factores de Riesgo , Diabetes Mellitus/epidemiología , Factores de Riesgo de Enfermedad Cardiaca
5.
IEEE J Biomed Health Inform ; 27(2): 1106-1117, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36427286

RESUMEN

Electronic health records (EHR) represent a holistic overview of patients' trajectories. Their increasing availability has fueled new hopes to leverage them and develop accurate risk prediction models for a wide range of diseases. Given the complex interrelationships of medical records and patient outcomes, deep learning models have shown clear merits in achieving this goal. However, a key limitation of current study remains their capacity in processing long sequences, and long sequence modelling and its application in the context of healthcare and EHR remains unexplored. Capturing the whole history of medical encounters is expected to lead to more accurate predictions, but the inclusion of records collected for decades and from multiple resources can inevitably exceed the receptive field of the most existing deep learning architectures. This can result in missing crucial, long-term dependencies. To address this gap, we present Hi-BEHRT, a hierarchical Transformer-based model that can significantly expand the receptive field of Transformers and extract associations from much longer sequences. Using a multimodal large-scale linked longitudinal EHR, the Hi-BEHRT exceeds the state-of-the-art deep learning models 1% to 5% for area under the receiver operating characteristic (AUROC) curve and 1% to 8% for area under the precision recall (AUPRC) curve on average, and 2% to 8% (AUROC) and 2% to 11% (AUPRC) for patients with long medical history for 5-year heart failure, diabetes, chronic kidney disease, and stroke risk prediction. Additionally, because pretraining for hierarchical Transformer is not well-established, we provide an effective end-to-end contrastive pre-training strategy for Hi-BEHRT using EHR, improving its transferability on predicting clinical events with relatively small training dataset.


Asunto(s)
Registros Electrónicos de Salud , Insuficiencia Cardíaca , Humanos , Área Bajo la Curva , Suministros de Energía Eléctrica , Curva ROC
6.
Sci Rep ; 12(1): 9239, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654993

RESUMEN

Multicollinearity refers to the presence of collinearity between multiple variables and renders the results of statistical inference erroneous (Type II error). This is particularly important in environmental health research where multicollinearity can hinder inference. To address this, correlated variables are often excluded from the analysis, limiting the discovery of new associations. An alternative approach to address this problem is the use of principal component analysis. This method, combines and projects a group of correlated variables onto a new orthogonal space. While this resolves the multicollinearity problem, it poses another challenge in relation to interpretability of results. Standard hypothesis testing methods can be used to evaluate the association of projected predictors, called principal components, with the outcomes of interest, however, there is no established way to trace the significance of principal components back to individual variables. To address this problem, we investigated the use of sparse principal component analysis which enforces a parsimonious projection. We hypothesise that this parsimony could facilitate the interpretability of findings. To this end, we investigated the association of 20 environmental predictors with all-cause mortality adjusting for demographic, socioeconomic, physiological, and behavioural factors. The study was conducted in a cohort of 379,690 individuals in the UK. During an average follow-up of 8.05 years (3,055,166 total person-years), 14,996 deaths were observed. We used Cox regression models to estimate the hazard ratio (HR) and 95% confidence intervals (CI). The Cox models were fitted to the standardised environmental predictors (a) without any transformation (b) transformed with PCA, and (c) transformed with SPCA. The comparison of findings underlined the potential of SPCA for conducting inference in scenarios where multicollinearity can increase the risk of Type II error. Our analysis unravelled a significant association between average noise pollution and increased risk of all-cause mortality. Specifically, those in the upper deciles of noise exposure have between 5 and 10% increased risk of all-cause mortality compared to the lowest decile.


Asunto(s)
Bancos de Muestras Biológicas , Exposición a Riesgos Ambientales , Exposición a Riesgos Ambientales/efectos adversos , Salud Ambiental , Humanos , Análisis de Componente Principal , Reino Unido/epidemiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-35737602

RESUMEN

Observational causal inference is useful for decision-making in medicine when randomized clinical trials (RCTs) are infeasible or nongeneralizable. However, traditional approaches do not always deliver unconfounded causal conclusions in practice. The rise of "doubly robust" nonparametric tools coupled with the growth of deep learning for capturing rich representations of multimodal data offers a unique opportunity to develop and test such models for causal inference on comprehensive electronic health records (EHRs). In this article, we investigate causal modeling of an RCT-established causal association: the effect of classes of antihypertensive on incident cancer risk. We develop a transformer-based model, targeted bidirectional EHR transformer (T-BEHRT) coupled with doubly robust estimation to estimate average risk ratio (RR). We compare our model to benchmark statistical and deep learning models for causal inference in multiple experiments on semi-synthetic derivations of our dataset with various types and intensities of confounding. In order to further test the reliability of our approach, we test our model on situations of limited data. We find that our model provides more accurate estimates of relative risk least sum absolute error (SAE) from ground truth compared with benchmark estimations. Finally, our model provides an estimate of class-wise antihypertensive effect on cancer risk that is consistent with results derived from RCTs.

8.
IEEE J Biomed Health Inform ; 26(7): 3362-3372, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130176

RESUMEN

Predicting the incidence of complex chronic conditions such as heart failure is challenging. Deep learning models applied to rich electronic health records may improve prediction but remain unexplainable hampering their wider use in medical practice. We aimed to develop a deep-learning framework for accurate and yet explainable prediction of 6-month incident heart failure (HF). Using 100,071 patients from longitudinal linked electronic health records across the U.K., we applied a novel Transformer-based risk model using all community and hospital diagnoses and medications contextualized within the age and calendar year for each patient's clinical encounter. Feature importance was investigated with an ablation analysis to compare model performance when alternatively removing features and by comparing the variability of temporal representations. A post-hoc perturbation technique was conducted to propagate the changes in the input to the outcome for feature contribution analyses. Our model achieved 0.93 area under the receiver operator curve and 0.69 area under the precision-recall curve on internal 5-fold cross validation and outperformed existing deep learning models. Ablation analysis indicated medication is important for predicting HF risk, calendar year is more important than chronological age, which was further reinforced by temporal variability analysis. Contribution analyses identified risk factors that are closely related to HF. Many of them were consistent with existing knowledge from clinical and epidemiological research but several new associations were revealed which had not been considered in expert-driven risk prediction models. In conclusion, the results highlight that our deep learning model, in addition high predictive performance, can inform data-driven risk factor identification.


Asunto(s)
Aprendizaje Profundo , Insuficiencia Cardíaca , Enfermedad Crónica , Registros Electrónicos de Salud , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Humanos , Factores de Riesgo
9.
Eur Heart J Digit Health ; 3(4): 535-547, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36710898

RESUMEN

Aims: Deep learning has dominated predictive modelling across different fields, but in medicine it has been met with mixed reception. In clinical practice, simple, statistical models and risk scores continue to inform cardiovascular disease risk predictions. This is due in part to the knowledge gap about how deep learning models perform in practice when they are subject to dynamic data shifts; a key criterion that common internal validation procedures do not address. We evaluated the performance of a novel deep learning model, BEHRT, under data shifts and compared it with several ML-based and established risk models. Methods and results: Using linked electronic health records of 1.1 million patients across England aged at least 35 years between 1985 and 2015, we replicated three established statistical models for predicting 5-year risk of incident heart failure, stroke, and coronary heart disease. The results were compared with a widely accepted machine learning model (random forests), and a novel deep learning model (BEHRT). In addition to internal validation, we investigated how data shifts affect model discrimination and calibration. To this end, we tested the models on cohorts from (i) distinct geographical regions; (ii) different periods. Using internal validation, the deep learning models substantially outperformed the best statistical models by 6%, 8%, and 11% in heart failure, stroke, and coronary heart disease, respectively, in terms of the area under the receiver operating characteristic curve. Conclusion: The performance of all models declined as a result of data shifts; despite this, the deep learning models maintained the best performance in all risk prediction tasks. Updating the model with the latest information can improve discrimination but if the prior distribution changes, the model may remain miscalibrated.

11.
Sci Rep ; 11(1): 20685, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667200

RESUMEN

One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural networks suffer from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher-level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for a more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and identifying misclassifications, with a comparable generalization performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.

12.
BMC Med ; 19(1): 258, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34706724

RESUMEN

BACKGROUND: Myocardial infarction (MI), stroke and diabetes share underlying risk factors and commonalities in clinical management. We examined if their combined impact on mortality is proportional, amplified or less than the expected risk separately of each disease and whether the excess risk is explained by their associated comorbidities. METHODS: Using large-scale electronic health records, we identified 2,007,731 eligible patients (51% women) and registered with general practices in the UK and extracted clinical information including diagnosis of myocardial infarction (MI), stroke, diabetes and 53 other long-term conditions before 2005 (study baseline). We used Cox regression to determine the risk of all-cause mortality with age as the underlying time variable and tested for excess risk due to interaction between cardiometabolic conditions. RESULTS: At baseline, the mean age was 51 years, and 7% (N = 145,910) have had a cardiometabolic condition. After a 7-year mean follow-up, 146,994 died. The sex-adjusted hazard ratios (HR) (95% confidence interval [CI]) of all-cause mortality by baseline disease status, compared to those without cardiometabolic disease, were MI = 1.51 (1.49-1.52), diabetes = 1.52 (1.51-1.53), stroke = 1.84 (1.82-1.86), MI and diabetes = 2.14 (2.11-2.17), MI and stroke = 2.35 (2.30-2.39), diabetes and stroke = 2.53 (2.50-2.57) and all three = 3.22 (3.15-3.30). Adjusting for other concurrent comorbidities attenuated these estimates, including the risk associated with having all three conditions (HR = 1.81 [95% CI 1.74-1.89]). Excess risks due to interaction between cardiometabolic conditions, particularly when all three conditions were present, were not significantly greater than expected from the individual disease effects. CONCLUSION: Myocardial infarction, stroke and diabetes were associated with excess mortality, without evidence of any amplification of risk in people with all three diseases. The presence of other comorbidities substantially contributed to the excess mortality risks associated with cardiometabolic disease multimorbidity.


Asunto(s)
Diabetes Mellitus , Infarto del Miocardio , Accidente Cerebrovascular , Diabetes Mellitus/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Multimorbilidad , Infarto del Miocardio/epidemiología , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Reino Unido/epidemiología
13.
PLoS Med ; 18(6): e1003674, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138851

RESUMEN

BACKGROUND: Our knowledge of how to better manage elevated blood pressure (BP) in the presence of comorbidities is limited, in part due to exclusion or underrepresentation of patients with multiple chronic conditions from major clinical trials. We aimed to investigate the burden and types of comorbidities in patients with hypertension and to assess how such comorbidities and other variables affect BP levels over time. METHODS AND FINDINGS: In this multiple landmark cohort study, we used linked electronic health records from the United Kingdom Clinical Practice Research Datalink (CPRD) to compare systolic blood pressure (SBP) levels in 295,487 patients (51% women) aged 61.5 (SD = 13.1) years with first recorded diagnosis of hypertension between 2000 and 2014, by type and numbers of major comorbidities, from at least 5 years before and up to 10 years after hypertension diagnosis. Time-updated multivariable linear regression analyses showed that the presence of more comorbidities was associated with lower SBP during follow-up. In hypertensive patients without comorbidities, mean SBP at diagnosis and at 10 years were 162.3 mm Hg (95% confidence interval [CI] 162.0 to 162.6) and 140.5 mm Hg (95% CI 140.4 to 140.6), respectively; in hypertensive patients with ≥5 comorbidities, these were 157.3 mm Hg (95% CI 156.9 to 157.6) and 136.8 mm Hg (95% 136.4 to 137.3), respectively. This inverse association between numbers of comorbidities and SBP was not specific to particular types of comorbidities, although associations were stronger in those with preexisting cardiovascular disease. Retrospective analysis of recorded SBP showed that the difference in mean SBP 5 years before diagnosis between those without and with ≥5 comorbidities was -9 mm Hg (95% CI -9.7 to -8.3), suggesting that mean recorded SBP already differed according to the presence of comorbidity before baseline. Within 1 year after the diagnosis, SBP substantially declined, but subsequent SBP changes across comorbidity status were modest, with no evidence of a more rapid decline in those with more or specific types of comorbidities. We identified factors, such as prescriptions of antihypertensive drugs and frequency of healthcare visits, that can explain SBP differences according to numbers or types of comorbidities, but these factors only partly explained the recorded SBP differences. Nevertheless, some limitations have to be considered including the possibility that diagnosis of some conditions may not have been recorded, varying degrees of missing data inherent in analytical datasets extracted from routine health records, and greater measurement errors in clinical measurements taken in routine practices than those taken in well-controlled clinical study settings. CONCLUSIONS: BP levels at which patients were diagnosed with hypertension varied substantially according to the presence of comorbidities and were lowest in patients with multi-morbidity. Our findings suggest that this early selection bias of hypertension diagnosis at different BP levels was a key determinant of long-term differences in BP by comorbidity status. The lack of a more rapid decline in SBP in those with multi-morbidity provides some reassurance for BP treatment in these high-risk individuals.


Asunto(s)
Presión Sanguínea , Hipertensión/fisiopatología , Anciano , Anciano de 80 o más Años , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Bases de Datos Factuales , Registros Electrónicos de Salud , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/epidemiología , Incidencia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Multimorbilidad , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Reino Unido/epidemiología
14.
J Biomed Inform ; 112: 103606, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33127447

RESUMEN

Multimorbidity, or the presence of several medical conditions in the same individual, has been increasing in the population - both in absolute and relative terms. Nevertheless, multimorbidity remains poorly understood, and the evidence from existing research to describe its burden, determinants and consequences has been limited. Previous studies attempting to understand multimorbidity patterns are often cross-sectional and do not explicitly account for multimorbidity patterns' evolution over time; some of them are based on small datasets and/or use arbitrary and narrow age ranges; and those that employed advanced models, usually lack appropriate benchmarking and validations. In this study, we (1) introduce a novel approach for using Non-negative Matrix Factorisation (NMF) for temporal phenotyping (i.e., simultaneously mining disease clusters and their trajectories); (2) provide quantitative metrics for the evaluation of these clusters and trajectories; and (3) demonstrate how the temporal characteristics of the disease clusters that result from our model can help mine multimorbidity networks and generate new hypotheses for the emergence of various multimorbidity patterns over time. We trained and evaluated our models on one of the world's largest electronic health records (EHR) datasets, containing more than 7 million patients, from which over 2 million where relevant to, and hence included in this study.


Asunto(s)
Registros Electrónicos de Salud , Multimorbilidad , Algoritmos , Estudios Transversales , Humanos
15.
Mech Ageing Dev ; 190: 111325, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32768443

RESUMEN

The prevalence of multimorbidity has been increasing in recent years, posing a major burden for health care delivery and service. Understanding its determinants and impact is proving to be a challenge yet it offers new opportunities for research to go beyond the study of diseases in isolation. In this paper, we review how the field of machine learning provides many tools for addressing research challenges in multimorbidity. We highlight recent advances in promising methods such as matrix factorisation, deep learning, and topological data analysis and how these can take multimorbidity research beyond cross-sectional, expert-driven or confirmatory approaches to gain a better understanding of evolving patterns of multimorbidity. We discuss the challenges and opportunities of machine learning to identify likely causal links between previously poorly understood disease associations while giving an estimate of the uncertainty on such associations. We finally summarise some of the challenges for wider clinical adoption of machine learning research tools and propose some solutions.


Asunto(s)
Gestión de la Información en Salud , Aprendizaje Automático , Multimorbilidad , Gestión de la Información en Salud/métodos , Gestión de la Información en Salud/tendencias , Humanos , Análisis de Mediación , Prevalencia
16.
Heart ; 106(20): 1573-1578, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32580977

RESUMEN

OBJECTIVES: We aimed to investigate whether digital home monitoring with centralised specialist support for remote management of heart failure (HF) is more effective in improving medical therapy and patients' quality of life than digital home monitoring alone. METHODS: In a two-armed partially blinded parallel randomised controlled trial, seven sites in the UK recruited a total of 202 high-risk patients with HF (71.3 years SD 11.1; left ventricular ejection fraction 32.9% SD 15.4). Participants in both study arms were given a tablet computer, Bluetooth-enabled blood pressure monitor and weighing scales for health monitoring. Participants randomised to intervention received additional regular feedback to support self-management and their primary care doctors received instructions on blood investigations and pharmacological treatment. The primary outcome was the use of guideline-recommended medical therapy for chronic HF and major comorbidities, measured as a composite opportunity score (total number of recommended treatment given divided by the total number of opportunities the treatment should have been given, with a score 1 indicating 100% adherence to recommendations). Co-primary outcome was change in physical score of Minnesota Living with Heart Failure questionnaire. RESULTS: 101 patients were randomised to 'enhanced self-management' and 101 to 'supported medical management'. At the end of follow-up, the opportunity score was 0.54 (95% CI 0.46 to 0.62) in the control arm and 0.61 (95% CI 0.52 to 0.70) in the intervention arm (p=0.25). Physical well-being of participants also did not differ significantly between the groups (17.4 (12.4) mean (SD) for control arm vs 16.5 (12.1) in treatment arm; p for change=0.84). CONCLUSIONS: Central provision of tailored specialist management in a multi-morbid HF population was feasible. However, there was no strong evidence for improvement in use of evidence-based treatment nor health-related quality of life. TRIAL REGISTRATION NUMBER: ISRCTN86212709.


Asunto(s)
Antropometría , Monitoreo Ambulatorio de la Presión Arterial , Insuficiencia Cardíaca/terapia , Autocuidado , Telemedicina , Anciano , Anciano de 80 o más Años , Antropometría/instrumentación , Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial/instrumentación , Peso Corporal , Enfermedad Crónica , Toma de Decisiones Clínicas , Computadoras de Mano , Femenino , Estado de Salud , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Calidad de Vida , Autocuidado/instrumentación , Telemedicina/instrumentación , Factores de Tiempo , Resultado del Tratamiento , Reino Unido
17.
Sci Rep ; 10(1): 7155, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32346050

RESUMEN

Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (including deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions in one's future visits. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking improvement of 8.0-13.2% (in terms of average precision scores for different tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient representations can be useful for future studies (i.e., transfer learning).


Asunto(s)
Registros Electrónicos de Salud , Algoritmos , Humanos , Aprendizaje Automático
18.
Open Heart ; 7(1): e001099, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153787

RESUMEN

Objective: The impact of heart failure (HF) on perceived and objectively measured levels of physical activity (PA) can inform risk stratification and treatment recommendation. We aimed to compare self-reported and objectively measured PA levels in a large sample of participants with and without HF. Methods: A validated PA questionnaire was used to estimate self-reported weekly PA among 1600 participants with HF and 387 580 participants without HF. Accelerometer data were studied in 596 participants with HF and 96 105 participants without HF for a period of 7 days. Using multivariable linear regression models, we compared the PA levels between participants with HF and without HF, focusing on both the average daily PA levels and the intensity of PAs throughout the day. Results: PA levels were significantly lower in participants with HF using both self-report (excess metabolic equivalent of task hours per week of 26.5 (95% CI 24.7 to 28.4) vs 34.7 (95% CI 34.5 to 34.9), respectively (p<0.001)) and accelerometer measures (mean accelerations of 23.7 milligravity (95% CI 23.1 to 24.4) vs 28.1 milligravity (95% CI 28.0 to 28.1), respectively (p<0.001)). Findings were consistent across different PA intensities. Hour-by-hour comparisons showed that accelerometer-derived PA levels of patients with HF were reduced throughout the day. Conclusion: Perceived and objectively recorded PA levels of patients with chronic HF are significantly lower than those of individuals without HF. This difference is continuous throughout the different hours of the day, with individuals with HF being on average 16% less active than individuals without HF. In patients with HF, increases in everyday activity may be a potential alternative to structured exercise programmes.


Asunto(s)
Actigrafía/instrumentación , Ejercicio Físico , Monitores de Ejercicio , Insuficiencia Cardíaca/fisiopatología , Conducta Sedentaria , Autoinforme , Adulto , Anciano , Estudios de Casos y Controles , Enfermedad Crónica , Estudios Transversales , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Tiempo , Reino Unido/epidemiología
19.
Eur Heart J ; 41(40): 3913-3920, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32076698

RESUMEN

AIMS: Aortic valve stenosis is commonly considered a degenerative disorder with no recommended preventive intervention, with only valve replacement surgery or catheter intervention as treatment options. We sought to assess the causal association between exposure to lipid levels and risk of aortic stenosis. METHODS AND RESULTS: Causality of association was assessed using two-sample Mendelian randomization framework through different statistical methods. We retrieved summary estimations of 157 genetic variants that have been shown to be associated with plasma lipid levels in the Global Lipids Genetics Consortium that included 188 577 participants, mostly European ancestry, and genetic association with aortic stenosis as the main outcome from a total of 432 173 participants in the UK Biobank. Secondary negative control outcomes included aortic regurgitation and mitral regurgitation. The odds ratio for developing aortic stenosis per unit increase in lipid parameter was 1.52 [95% confidence interval (CI) 1.22-1.90; per 0.98 mmol/L] for low density lipoprotein (LDL)-cholesterol, 1.03 (95% CI 0.80-1.31; per 0.41 mmol/L) for high density lipoprotein (HDL)-cholesterol, and 1.38 (95% CI 0.92-2.07; per 1 mmol/L) for triglycerides. There was no evidence of a causal association between any of the lipid parameters and aortic or mitral regurgitation. CONCLUSION: Lifelong exposure to high LDL-cholesterol increases the risk of symptomatic aortic stenosis, suggesting that LDL-lowering treatment may be effective in its prevention.


Asunto(s)
Estenosis de la Válvula Aórtica , Lípidos , Análisis de la Aleatorización Mendeliana , Estenosis de la Válvula Aórtica/epidemiología , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/cirugía , HDL-Colesterol , LDL-Colesterol/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Lípidos/sangre , Masculino , Plasma , Factores de Riesgo , Triglicéridos
20.
J Biomed Inform ; 101: 103337, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31916973

RESUMEN

Despite the recent developments in deep learning models, their applications in clinical decision-support systems have been very limited. Recent digitalisation of health records, however, has provided a great platform for the assessment of the usability of such techniques in healthcare. As a result, the field is starting to see a growing number of research papers that employ deep learning on electronic health records (EHR) for personalised prediction of risks and health trajectories. While this can be a promising trend, vast paper-to-paper variability (from data sources and models they use to the clinical questions they attempt to answer) have hampered the field's ability to simply compare and contrast such models for a given application of interest. Thus, in this paper, we aim to provide a comparative review of the key deep learning architectures that have been applied to EHR data. Furthermore, we also aim to: (1) introduce and use one of the world's largest and most complex linked primary care EHR datasets (i.e., Clinical Practice Research Datalink, or CPRD) as a new asset for training such data-hungry models; (2) provide a guideline for working with EHR data for deep learning; (3) share some of the best practices for assessing the "goodness" of deep-learning models in clinical risk prediction; (4) and propose future research ideas for making deep learning models more suitable for the EHR data. Our results highlight the difficulties of working with highly imbalanced datasets, and show that sequential deep learning architectures such as RNN may be more suitable to deal with the temporal nature of EHR.


Asunto(s)
Aprendizaje Profundo , Registros Electrónicos de Salud , Predicción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...