Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Front Cell Infect Microbiol ; 12: 1010038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310866

RESUMEN

The Toxoplasma gondii tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication. Nevertheless, only a few proteins of this structure have been described and functionally assessed. In this study, we used spatial proteomics to identify new basal complex components (BCC), and in situ imaging, including ultrastructure expansion microscopy, to position them. We thus confirmed the localization of nine BCCs out of the 12 selected candidates and assigned them to different sub-compartments of the basal complex, including two new domains located above the basal ring and below the posterior cup. Their functional investigation revealed that none of these BCCs are essential for parasite growth in vitro. However, one BCC is critical for constricting of the basal complex, likely through direct interaction with the class VI myosin heavy chain J (MyoJ), and for gliding motility. Four other BCCs, including a phosphatase and a guanylate-binding protein, are involved in the formation and/or maintenance of the intravacuolar parasite connection, which is required for the rosette organization and synchronicity of cell division.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Toxoplasma/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasmosis/parasitología , Citoesqueleto/metabolismo , División Celular
3.
J Cell Sci ; 135(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588197

RESUMEN

In Trypanosoma brucei, transition fibres (TFs) form a nine-bladed pattern-like structure connecting the base of the flagellum to the flagellar pocket membrane. Despite the characterization of two TF proteins, CEP164C and T. brucei (Tb)RP2, little is known about the organization of these fibres. Here, we report the identification and characterization of the first kinetoplastid-specific TF protein, named TFK1 (Tb927.6.1180). Bioinformatics and functional domain analysis identified three distinct domains in TFK1 - an N-terminal domain of an unpredicted function, a coiled-coil domain involved in TFK1-TFK1 interaction and a C-terminal intrinsically disordered region potentially involved in protein interaction. Cellular immunolocalization showed that TFK1 is a newly identified basal body maturation marker. Furthermore, using ultrastructure expansion and immuno-electron microscopies we localized CEP164C and TbRP2 at the TF, and TFK1 on the distal appendage matrix of the TF. Importantly, RNAi-mediated knockdown of TFK1 in bloodstream form cells induced misplacement of basal bodies, a defect in the furrow or fold generation, and eventually cell death. We hypothesize that TFK1 is a basal body positioning-specific actor and a key regulator of cytokinesis in the bloodstream form Trypanosoma brucei.


Asunto(s)
Trypanosoma brucei brucei , Cuerpos Basales/metabolismo , Citocinesis , Flagelos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo
4.
Cell Rep ; 37(12): 110133, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936875

RESUMEN

Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Cannabinoides/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Receptores de Cannabinoides/fisiología , Sinapsis/fisiología , Animales , Astrocitos/citología , Canales de Calcio/fisiología , Señalización del Calcio , Células Cultivadas , Hipocampo/metabolismo , Homeostasis , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Transmisión Sináptica
5.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563842

RESUMEN

In filamentous fungi, NLR-based signalosomes activate downstream membrane-targeting cell death-inducing proteins by a mechanism of amyloid templating. In the species Podospora anserina, two such signalosomes, NWD2/HET-S and FNT1/HELLF, have been described. An analogous system involving a distinct amyloid signaling motif, termed PP, was also identified in the genome of the species Chaetomium globosum and studied using heterologous expression in Podospora anserina The PP motif bears resemblance to the RIP homotypic interaction motif (RHIM) and to RHIM-like motifs controlling necroptosis in mammals and innate immunity in flies. We identify here a third NLR signalosome in Podospora anserina comprising a PP motif and organized as a two-gene cluster encoding an NLR and an HELL domain cell death execution protein termed HELLP. We show that the PP motif region of HELLP forms a prion we term [π] and that [π] prions trigger the cell death-inducing activity of full-length HELLP. We detect no prion cross-seeding between HET-S, HELLF, and HELLP amyloid motifs. In addition, we find that, like PP motifs, RHIMs from human RIP1 and RIP3 kinases are able to form prions in Podospora and that [π] and [Rhim] prions partially cross-seed. Our study shows that Podospora anserina displays three independent cell death-inducing amyloid signalosomes. Based on the described functional similarity between RHIM and PP, it appears likely that these amyloid motifs constitute evolutionarily related cell death signaling modules.IMPORTANCE Amyloids are ß-sheet-rich protein polymers that can be pathological or display a variety of biological roles. In filamentous fungi, specific immune receptors activate programmed cell death execution proteins through a process of amyloid templating akin to prion propagation. Among these fungal amyloid signaling sequences, the PP motif stands out because it shows similarity to the RHIM, an amyloid sequence controlling necroptotic cell death in mammals. We characterized an amyloid signaling system comprising a PP motif in the model species Podospora anserina, thus bringing to three the number of independent amyloid signaling cell death pathways described in that species. We then showed that human RHIMs not only propagate as prions in P. anserina but also partially cross-seed with fungal PP prions. These results indicate that, in addition to showing sequence similarity, the PP and RHIM motifs are at least partially functionally related, supporting a model of long-term evolutionary conservation of amyloid signaling mechanisms from fungi to mammals.


Asunto(s)
Amiloide/metabolismo , Chaetomium/fisiología , Motivos de Nucleótidos , Podospora/fisiología , Priones/genética , Priones/fisiología , Transducción de Señal/genética , Amiloide/genética , Animales , Chaetomium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacocinética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Familia de Multigenes , Podospora/genética , Priones/clasificación , Transducción de Señal/fisiología
6.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118942, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33359711

RESUMEN

Mitochondrial ATP-synthesis is catalyzed by a F1Fo-ATP synthase, an enzyme of dual genetic origin enriched at the edge of cristae where it plays a key role in their structure/stability. The enzyme's biogenesis remains poorly understood, both from a mechanistic and a compartmentalization point of view. The present study provides novel molecular insights into this process through investigations on a human protein called TMEM70 with an unclear role in the assembly of ATP synthase. A recent study has revealed the existence of physical interactions between TMEM70 and the subunit c (Su.c), a protein present in 8 identical copies forming a transmembrane oligomeric ring (c-ring) within the ATP synthase proton translocating domain (Fo). Herein we analyzed the ATP-synthase assembly in cells lacking TMEM70, mitochondrial DNA or F1 subunits and observe a direct correlation between TMEM70 and Su.c levels, regardless of the status of other ATP synthase subunits or of mitochondrial bioenergetics. Immunoprecipitation, two-dimensional blue-native/SDS-PAGE, and pulse-chase experiments reveal that TMEM70 forms large oligomers that interact with Su.c not yet incorporated into ATP synthase complexes. Moreover, discrete TMEM70-Su.c complexes with increasing Su.c contents can be detected, suggesting a role for TMEM70 oligomers in the gradual assembly of the c-ring. Furthermore, we demonstrate using expansion super-resolution microscopy the specific localization of TMEM70 at the inner cristae membrane, distinct from the MICOS component MIC60. Taken together, our results show that TMEM70 oligomers provide a scaffold for c-ring assembly and that mammalian ATP synthase is assembled within inner cristae membranes.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Línea Celular , Metabolismo Energético , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Microscopía Electrónica , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Dominios Proteicos , Multimerización de Proteína
7.
J Mol Biol ; 432(23): 6005-6027, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33058872

RESUMEN

In filamentous fungi, amyloid signaling sequences allow Nod-like receptors (NLRs) to activate downstream cell-death inducing proteins with HeLo and HeLo-like (HELL) domains and amyloid RHIM and RHIM-related motifs control immune defense pathways in mammals and flies. Herein, we show bioinformatically that analogous amyloid signaling motifs exist in bacteria. These short motifs are found at the N terminus of NLRs and at the C terminus of proteins with a domain we term BELL. The corresponding NLR and BELL proteins are encoded by adjacent genes. We identify 10 families of such bacterial amyloid signaling sequences (BASS), one of which (BASS3) is homologous to RHIM and a fungal amyloid motif termed PP. BASS motifs occur nearly exclusively in bacteria forming multicellular structures (mainly in Actinobacteria and Cyanobacteria). We analyze experimentally a subset of seven of these motifs (from the most common BASS1 family and the RHIM-related BASS3 family) and find that these sequences form fibrils in vitro. Using a fungal in vivo model, we show that all tested BASS-motifs form prions and that the NLR-side motifs seed prion-formation of the corresponding BELL-side motif. We find that BASS3 motifs show partial prion cross-seeding with mammalian RHIM and fungal PP-motifs and that proline mutations on key positions of the BASS3 core motif, conserved in RHIM and PP-motifs, abolish prion formation. This work expands the paradigm of prion amyloid signaling to multicellular prokaryotes and suggests a long-term evolutionary conservation of these motifs from bacteria, to fungi and animals.


Asunto(s)
Amiloide/genética , Evolución Molecular , Inmunidad Innata/genética , Proteínas NLR/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos/genética , Proteínas Amiloidogénicas/genética , Animales , Cianobacterias/genética , Drosophila/genética , Hongos/genética , Genoma Bacteriano/genética , Priones/genética , Transducción de Señal/genética
8.
Mol Biol Evol ; 37(10): 2887-2899, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437540

RESUMEN

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.


Asunto(s)
Autofagia Mediada por Chaperones , Evolución Molecular , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Oryzias/genética , Animales , Metabolismo de los Hidratos de Carbono , Línea Celular , Exones , Fibroblastos/fisiología , Humanos , Metabolismo de los Lípidos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Oryzias/metabolismo
9.
J Biol Chem ; 295(15): 5095-5109, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32075909

RESUMEN

Heme (iron protoporphyrin IX) is a well-known prosthetic group for enzymes involved in metabolic pathways such as oxygen transport and electron transfer through the mitochondrial respiratory chain. However, heme has also been shown to be an important regulatory molecule (as "labile" heme) for diverse processes such as translation, kinase activity, and transcription in mammals, yeast, and bacteria. Taking advantage of a yeast strain deficient for heme production that enabled controlled modulation and monitoring of labile heme levels, here we investigated the role of labile heme in the regulation of mitochondrial biogenesis. This process is regulated by the HAP complex in yeast. Using several biochemical assays along with EM and epifluorescence microscopy, to the best of our knowledge, we show for the first time that cellular labile heme is critical for the post-translational regulation of HAP complex activity, most likely through the stability of the transcriptional co-activator Hap4p. Consequently, we found that labile heme regulates mitochondrial biogenesis and cell growth. The findings of our work highlight a new mechanism in the regulation of mitochondrial biogenesis by cellular metabolites.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Hemina/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Unión a CCAAT/genética , Consumo de Oxígeno , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
10.
Hum Mol Genet ; 28(22): 3792-3804, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31276579

RESUMEN

The m.8993T>G mutation of the mitochondrial MT-ATP6 gene has been associated with numerous cases of neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome, which are diseases known to result from abnormalities affecting mitochondrial energy transduction. We previously reported that an equivalent point mutation severely compromised proton transport through the ATP synthase membrane domain (FO) in Saccharomyces cerevisiae and reduced the content of cytochrome c oxidase (Complex IV or COX) by 80%. Herein, we report that overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) considerably increases Complex IV abundance and tricarboxylic acid-mediated substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate into succinate in m.8993T>G yeast. Consistently in m.8993T>G yeast cells, the retrograde signaling pathway was found to be strongly induced in order to preserve α-ketoglutarate production; when Odc1p was overexpressed, this stress pathway returned to an almost basal activity. Similar beneficial effects were induced by a partial uncoupling of the mitochondrial membrane with the proton ionophore, cyanide m-chlorophenyl hydrazone. This chemical considerably improved the glutamine-based, respiration-dependent growth of human cytoplasmic hybrid cells that are homoplasmic for the m.8993T>G mutation. These findings shed light on the interdependence between ATP synthase and Complex IV biogenesis, which could lay the groundwork for the creation of nutritional or metabolic interventions for attenuating the effects of mtDNA mutations.


Asunto(s)
Mitocondrias/metabolismo , Miopatías Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Retinitis Pigmentosa/metabolismo , Adenosina Trifosfato/metabolismo , Ataxia/genética , Deficiencia de Citocromo-c Oxidasa/genética , ADN Mitocondrial/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Transporte Iónico , Enfermedad de Leigh , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación , Retinitis Pigmentosa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Cell Sci ; 132(1)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510114

RESUMEN

Mitophagy, the selective degradation of mitochondria by autophagy, is a central process that is essential for the maintenance of cell homeostasis. It is implicated in the clearance of superfluous or damaged mitochondria and requires specific proteins and regulators to perform. In yeast, Atg32, an outer mitochondrial membrane protein, interacts with the ubiquitin-like Atg8 protein, promoting the recruitment of mitochondria to the phagophore and their sequestration within autophagosomes. Atg8 is anchored to the phagophore and autophagosome membranes thanks to a phosphatidylethanolamine tail. In Saccharomyces cerevisiae, several phosphatidylethanolamine synthesis pathways have been characterized, but their contribution to autophagy and mitophagy are unknown. Through different approaches, we show that Psd1, the mitochondrial phosphatidylserine decarboxylase, is involved in mitophagy induction only after nitrogen starvation, whereas Psd2, which is located in vacuole, Golgi and endosome membranes, is required preferentially for mitophagy induction in the stationary phase of growth but also to a lesser extent for nitrogen starvation-induced mitophagy. Our results suggest that the mitophagy defect observed in Δpsd1 yeast cells after nitrogen starvation may be due to a failure of Atg8 recruitment to mitochondria.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Carboxiliasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Nitrógeno/deficiencia , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Carboxiliasas/genética , Proteínas Mitocondriales/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Inanición , Vacuolas/metabolismo
12.
Sci Rep ; 8(1): 10151, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29977029

RESUMEN

The low levels of methionine in vegetable raw materials represent a limit to their use in aquafeed. Methionine is considered as an important factor in the control of oxidative status. However, restriction of dietary methionine has been shown to reduce generation of mitochondrial oxygen radicals and thus oxidative damage in liver. Here, we aim to evaluate the effect of dietary methionine deficiency in hepatic oxidative status in rainbow trout and identify the underlying mechanisms. Fish were fed for 6 weeks diets containing two different methionine concentrations: deficient (MD, Methionine Deficient diet) or adequate (CTL, control diet). At the end of the experiment, fish fed the MD diet showed a significantly lower body weight and feed efficiency compared to fish fed the CTL diet. Growth reduction of the MD group was associated to a general mitochondrial defect and a concomitant decrease of the oxidative status in the liver. The obtained results also revealed a sharp increase of mitochondrial degradation through mitophagy in these conditions and emphasized the involvement of the PINK1/PARKIN axis in this event. Collectively, these results provide a broader understanding of the mechanisms at play in the reduction of oxidant status upon dietary methionine deficiency.


Asunto(s)
Dieta , Hígado/metabolismo , Metionina/deficiencia , Mitocondrias/metabolismo , Mitofagia , Oncorhynchus mykiss/metabolismo , Animales , Antioxidantes/metabolismo , Peso Corporal , ADN Mitocondrial/metabolismo , Metabolismo Energético , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado/ultraestructura , Mitocondrias/ultraestructura , Oncorhynchus mykiss/crecimiento & desarrollo , Oxidación-Reducción , Fosforilación Oxidativa , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Biochim Biophys Acta Bioenerg ; 1859(6): 434-444, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29540299

RESUMEN

The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-ß-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.


Asunto(s)
Proteínas Algáceas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fosforilación Oxidativa , Volvocida/metabolismo , Proteínas Algáceas/genética , Detergentes/química , Digitonina/química , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Expresión Génica , Glucósidos/química , Mitocondrias/genética , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Unión Proteica , Volvocida/genética
14.
J Vis Exp ; (123)2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28518127

RESUMEN

Transmission Electron Microscopy (TEM) is an extraordinary tool for studying cell ultrastructure, in order to localize proteins and visualize macromolecular complexes at very high resolution. However, to get as close as possible to the native state, perfect sample preservation is required. Conventional electron microscopy (EM) fixation with aldehydes, for instance, does not provide good ultrastructural preservation. The slow penetration of fixatives induces cell reorganization and loss of various cell components. Therefore, conventional EM fixation does not allow for an instantaneous stabilization and preservation of structures and antigenicity. The best choice for examining intracellular events is to use cryofixation followed by the freeze-substitution fixation method that keeps cells in their native state. High-pressure freezing/freeze-substitution, which preserves the integrity of cellular ultrastructure, is the most commonly used method, but requires expensive equipment. Here, an easy-to-use and low-cost freeze fixation method followed by freeze-substitution for suspension cell cultures is presented.


Asunto(s)
Criopreservación/métodos , Microscopía Electrónica de Transmisión/métodos , Bacterias/ultraestructura , Congelación , Presión , Levaduras/ultraestructura
15.
Nat Commun ; 8: 14124, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112156

RESUMEN

A master coordinator of cell growth, mTORC1 is activated by different metabolic inputs, particularly the metabolism of glutamine (glutaminolysis), to control a vast range of cellular processes, including autophagy. As a well-recognized tumour promoter, inhibitors of mTORC1 such as rapamycin have been approved as anti-cancer agents, but their overall outcome in patients is rather poor. Here we show that mTORC1 also presents tumour suppressor features in conditions of nutrient restrictions. Thus, the activation of mTORC1 by glutaminolysis during nutritional imbalance inhibits autophagy and induces apoptosis in cancer cells. Importantly, rapamycin treatment reactivates autophagy and prevents the mTORC1-mediated apoptosis. We also observe that the ability of mTORC1 to activate apoptosis is mediated by the adaptor protein p62. Thus, the mTORC1-mediated upregulation of p62 during nutrient imbalance induces the binding of p62 to caspase 8 and the subsequent activation of the caspase pathway. Our data highlight the role of autophagy as a survival mechanism upon rapamycin treatment.


Asunto(s)
Apoptosis/fisiología , Glutamina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Anticuerpos , Autofagia , Línea Celular Tumoral , Medios de Cultivo/química , Regulación de la Expresión Génica/fisiología , Humanos , Plásmidos , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
J Cell Biol ; 213(5): 525-34, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27241913

RESUMEN

Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function.


Asunto(s)
Lípidos de la Membrana/biosíntesis , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Eliminación de Gen , Membranas Mitocondriales/ultraestructura , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas , Fosfatidilserinas/metabolismo , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
17.
Oncotarget ; 7(13): 17129-43, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26958941

RESUMEN

Bcl-xL is a member of the Bcl-2 family, playing a critical role in the survival of tumor cells. Here, we show that Bcl-xL oncogenic function can be uncoupled from its anti-apoptotic activity when it is regulated by the post-translational deamidation of its Asn52.Bcl-xL activity can be regulated by post-translational modifications: deamidation of Asn52 and 66 into Asp residues was reported to occur exclusively in response to DNA damage, and to cripple its anti-apoptotic activity. Our work reports for the first time the spontaneous occurrence of monodeamidated Asp52Bcl-xL in control conditions, in vivo and in vitro. In the normal and cancer cell lines tested, no less than 30% and up to 56% of Bcl-xL was singly deamidated on Asn52. Functional analyses revealed that singly deamidated Bcl-xL retains anti-apoptotic functions, and exhibits enhanced autophagic activity while harboring impaired clonogenic and tumorigenic properties compared to native Bcl-xL. Additionally, Asp52Bcl-xL remains phosphorylatable, and thus is still an eligible target of anti-neoplasic agents. Altogether our results complement the existing data on Bcl-xL deamidation: they challenge the common acceptance that Asn52 and Asn66 are equally eligible for deamidation, and provide a valuable improvement of our knowledge on the regulation of Bcl-xLoncogenic functions by deamidation.


Asunto(s)
Carcinogénesis/metabolismo , Proteína bcl-X/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Línea Celular Tumoral , Proliferación Celular , Embrión de Pollo , Desaminación , Xenoinjertos , Humanos , Ratones , Procesamiento Proteico-Postraduccional
18.
Proc Natl Acad Sci U S A ; 113(10): 2720-5, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903619

RESUMEN

Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP. The gene encoding HELLP is part of a three-gene cluster also encoding a lipase (SBP) and a Nod-like receptor, both of which display the PP motif. The PP motif is similar to the RHIM amyloid motif directing formation of the RIP1/RIP3 necrosome in humans. The C-terminal region of HELLP, HELLP(215-278), encompassing the motif, allows prion propagation and assembles into amyloid fibrils, as demonstrated by X-ray diffraction and FTIR analyses. Solid-state NMR studies reveal a well-ordered local structure of the amyloid core residues and a primary sequence that is almost entirely arranged in a rigid conformation, and confirm a ß-sheet structure in an assigned stretch of three amino acids. HELLP is activated by amyloid templating and displays membrane-targeting and cell death-inducing activity. HELLP targets the SBP lipase to the membrane, suggesting a synergy between HELLP and SBP in membrane dismantling. Remarkably, the HeLo-like domain of HELLP is homologous to the pore-forming domain of MLKL, the cell death-execution protein in necroptosis, revealing a transkingdom evolutionary relationship between amyloid-controlled fungal programmed cell death and mammalian necroptosis.


Asunto(s)
Secuencias de Aminoácidos , Amiloide/metabolismo , Proteínas Fúngicas/metabolismo , Podospora/metabolismo , Secuencia de Aminoácidos , Amiloide/química , Amiloide/genética , Muerte Celular/genética , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Podospora/genética , Priones/química , Priones/genética , Priones/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
19.
Autophagy ; 12(2): 343-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26902586

RESUMEN

Monitoring autophagic flux in vivo or in organs remains limited and the ideal methods relative to the techniques possible with cell culture may not exist. Recently, a few papers have demonstrated the feasibility of measuring autophagic flux in vivo by intraperitoneal (IP) injection of pharmacological agents (chloroquine, leupeptin, vinblastine, and colchicine). However, the metabolic consequences of the administration of these drugs remain largely unknown. Here, we report that 0.8 mg/kg/day IP colchicine increased LC3-II protein levels in the liver of fasted trout, supporting the usefulness of this drug for studying autophagic flux in vivo in our model organism. This effect was accompanied by a decrease of plasma glucose concentration associated with a fall in the mRNA levels of gluconeogenesis-related genes. Concurrently, triglycerides and lipid droplets content in the liver increased. In contrast, transcript levels of ß-oxidation-related gene Cpt1a dropped significantly. Together, these results match with the reported role of autophagy in the regulation of glucose homeostasis and intracellular lipid stores, and highlight the importance of considering these effects when using colchicine as an in vivo "autophagometer."


Asunto(s)
Autofagia/efectos de los fármacos , Colchicina/farmacología , Oncorhynchus mykiss/metabolismo , Adenilato Quinasa/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Autofagia/genética , Biomarcadores/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Hígado Graso/metabolismo , Hígado Graso/patología , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
20.
Biochim Biophys Acta ; 1864(4): 388-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26805576

RESUMEN

Prohevein is a wound-induced protein and a main allergen from latex of Hevea brasiliensis (rubber tree). This 187 amino-acid protein is cleaved in two fragments: a N-terminal 43 amino-acids called hevein, a lectin bearing a chitin-binding motif with antifungal properties and a C-terminal domain (C-ter) far less characterized. We provide here new insights on the characteristics of prohevein, hevein and C-terminal domain. Using complementary biochemical (ThT/CR/chitin binding, agglutination) and structural (modeling, ATR-FTIR, TEM, WAXS) approaches, we show that this domain clearly displays all the characteristics of an amyloid-like proteins in vitro, that could confer agglutination activity in synergy with its chitin-binding activity. Additionally, this C-ter domain is highly conserved and present in numerous plant prohevein-like proteins or pathogenesis-related (PR and WIN) proteins. This could be the hallmark of the eventual presence of proteins with amyloid properties in plants, that could potentially play a role in defense through aggregation properties.


Asunto(s)
Amiloide/química , Antígenos de Plantas/química , Proteínas de Plantas/química , Aglutinación , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA