Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biomed Imaging ; 2024: 3655327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665417

RESUMEN

Purpose: The Gram-positive Staphylococcus aureus bacterium is one of the leading causes of infection in humans. The lack of specific noninvasive techniques for diagnosis of staphylococcal infection together with the severity of its associated complications support the need for new specific and selective diagnostic tools. This work presents the successful synthesis of an immunotracer that targets the α-toxin released by S. aureus. Methods: [89Zr]Zr-DFO-ToxAb was synthesized based on radiolabeling an anti-α-toxin antibody with zirconium-89. The physicochemical characterization of the immunotracer was performed by high-performance liquid chromatography (HPLC), radio-thin layer chromatography (radio-TLC), and electrophoretic analysis. Its diagnostic ability was evaluated in vivo by positron emission tomography/computed tomography (PET/CT) imaging in an animal model of local infection-inflammation (active S. aureus vs. heat-killed S. aureus) and infective osteoarthritis. Results: Chemical characterization of the tracer established the high radiochemical yield and purity of the tracer while maintaining antibody integrity. In vivo PET/CT image confirmed the ability of the tracer to detect active foci of S. aureus. Those results were supported by ex vivo biodistribution studies, autoradiography, and histology, which confirmed the ability of [89Zr]Zr-DFO-ToxAb to detect staphylococcal infectious foci, avoiding false-positives derived from inflammatory processes. Conclusions: We have developed an immuno-PET tracer capable of detecting S. aureus infections based on a radiolabeled antibody specific for the staphylococcal alpha toxins. The in vivo assessment of [89Zr]Zr-DFO-ToxAb confirmed its ability to selectively detect staphylococcal infectious foci, allowing us to discern between infectious and inflammatory processes.

2.
Biomed Pharmacother ; 173: 116381, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452655

RESUMEN

Curcumin is a natural molecule widely tested in preclinical and clinical studies due to its antioxidant and anti-inflammatory activity. Nevertheless, its high hydrophobicity and low bioavailability limit in vivo applications. To overcome curcumin´s drawbacks, small extracellular vesicles (sEVs) have emerged as potential drug delivery systems due to their non-immunogenicity, nanometric size and amphiphilic composition. This work presents curcumin cargo into milk sEV structure and further in vitro and in vivo evaluation as a therapeutic nanoplatform. The encapsulation of curcumin into sEV was performed by two methodologies under physiological conditions: a passive incorporation and active cargo employing saponin. Loaded sEVs (sEVCurPas and sEVCurAc) were fully characterized by physicochemical techniques, confirming that neither methodology affects the morphology or size of the nanoparticles (sEV: 113.3±5.1 nm, sEVCurPas: 127.0±4.5 nm and sEVCurAc: 98.5±3.6 nm). Through the active approach with saponin (sEVCurAc), a three-fold higher cargo was obtained (433.5 µg/mL) in comparison with the passive approach (129.1 µg/mL). These sEVCurAc were further evaluated in vitro by metabolic activity assay (MTT), confocal microscopy, and flow cytometry, showing a higher cytotoxic effect in the tumoral cells RAW264.7 and HepG2 than in primary hepatocytes, specially at high doses of sEVCurAc (4%, 15% and 30% of viability). In vivo evaluation in an experimental model of liver fibrosis confirmed sEVCurAc therapeutic effects, leading to a significant decrease of serum markers of liver damage (ALT) (557 U/L to 338 U/L with sEVCurAc therapy) and a tendency towards decreased liver fibrogenesis and extracellular matrix (ECM) deposition.


Asunto(s)
Curcumina , Vesículas Extracelulares , Saponinas , Humanos , Animales , Curcumina/química , Leche , Cirrosis Hepática
3.
Front Bioeng Biotechnol ; 11: 1197780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829562

RESUMEN

Introduction: Goat milk is notable as a cost-effective source of exosomes, also known as small extracellular vesicles (sEVs). These nanoparticle-like structures are naturally secreted by cells and have emerged as potential diagnostic agents and drug delivery systems, also supported by their proven therapeutic effects. However, the complexity of goat milk and the lack of standardized protocols make it difficult to isolate pure sEVs. This work presents an optimized approach that combines well-established physical isolation methods with the biological treatment of milk with rennet. Methods: sEVs derived from goat milk were purified using a methodology that combines differential ultracentrifugation, rennet, and size-exclusion chromatography. This novel strategy was compared with two of the main methodologies developed for isolating extracellular vesicles from bovine and human milk by means of physico-chemical characterization of collected vesicles using Transmission Electron Microscopy, Western blot, Bradford Coomassie assay, Dynamic Light Scattering, Nanoparticle Tracking Analysis and Zeta Potential. Results: Vesicles isolated with the optimized protocol had sEV-like characteristics and high homogeneity, while samples obtained with the previous methods were highly aggregated, with significant residual protein content. Discussion: This work provides a novel biophysical methodology for isolating highly enriched goat milk sEVs samples with high stability and homogeneity, for their further evaluation in biomedical applications as diagnostic tools or drug delivery systems.

4.
Biol Direct ; 17(1): 31, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376978

RESUMEN

BACKGROUND: Small extracellular vesicles (sEVs) are emerging natural nanoplatforms in cancer diagnosis and therapy, through the incorporation of signal components or drugs in their structure. However, for their translation into the clinical field, there is still a lack of tools that enable a deeper understanding of their in vivo pharmacokinetics or their interactions with the cells of the tumor microenvironment. In this study, we have designed a dual-sEV probe based on radioactive and fluorescent labeling of goat milk sEVs. RESULTS: The imaging nanoprobe was tested in vitro and in vivo in a model of glioblastoma. In vitro assessment of the uptake of the dual probe in different cell populations (RAW 264.7, U87, and HeLa) by optical and nuclear techniques (gamma counter, confocal imaging, and flow cytometry) revealed the highest uptake in inflammatory cells (RAW 264.7), followed by glioblastoma U87 cells. In vivo evaluation of the pharmacokinetic properties of nanoparticles confirmed a blood circulation time of ~ 8 h and primarily hepatobiliary elimination. The diagnostic capability of the dual nanoprobe was confirmed in vivo in a glioblastoma xenograft model, which showed intense in vivo uptake of the SEV-based probe in tumor tissue. Histological assessment by confocal imaging enabled quantification of tumor populations and confirmed uptake in tumor cells and tumor-associated macrophages, followed by cancer-associated fibroblasts and endothelial cells. CONCLUSIONS: We have developed a chemical approach for dual radioactive and fluorescent labeling of sEVs. This methodology enables in vivo and in vitro study of these vesicles after exogenous administration. The dual nanoprobe would be a promising technology for cancer diagnosis and a powerful tool for studying the biological behavior of these nanosystems for use in drug delivery.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Células Endoteliales , Línea Celular Tumoral , Nanopartículas/química , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
5.
Small ; 18(6): e2105421, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854563

RESUMEN

Exosomes are cell-derived nanovesicles with a proven intercellular signaling role in inflammation processes and immune response. Due to their natural origin and liposome-like structure, these nanometer-scale vesicles have emerged as novel platforms for therapy and diagnosis. In this work, goat milk exosomes are isolated and fully characterized in terms of their physicochemical properties, proteomics, and biochemical profile in healthy mice, and used to detect inflammatory processes by optical imaging. For the in vitro and in vivo experiments, the exosomes are covalently labeled with the commercial fluorophores sulfo-Cyanine 5 and BODIPY-FL to create nanoprobes. In vitro studies using confocal imaging, flow cytometry, and colorimetric assays confirm the internalization of the nanoprobes as well their lack of cytotoxicity in macrophage populations RAW 264.7. Optical imaging in the mouse peritoneal region confirms the in vivo ability of one of the nanoprobes to localize inflammatory processes. In vivo imaging shows exosome uptake in the inflamed peritoneal region, and flow-cytometric analysis of peritonitis exudates confirms the uptake by macrophage and neutrophil populations. These results support the promising use of goat milk exosomes as natural probes in the detection of inflammatory processes.


Asunto(s)
Exosomas , Leche/química , Nanopartículas , Animales , Cabras , Ratones , Imagen Óptica
6.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502146

RESUMEN

Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs-PEG-cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, p < 0.001, and threefold increase in storage modulus, p < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, p < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, p < 0.05). In conclusion, the combination of EVs-PEG-cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.


Asunto(s)
Matriz Extracelular/química , Vesículas Extracelulares/metabolismo , Hidrogeles/química , Miocardio/citología , Polietilenglicoles/química , Animales , Vesículas Extracelulares/trasplante , Humanos , Ratones , Ratones Endogámicos BALB C , Miocardio/metabolismo , Células Madre/metabolismo , Porcinos
7.
Biomedicines ; 9(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467033

RESUMEN

The vertiginous increase in the use of extracellular vesicles and especially exosomes for therapeutic applications highlights the necessity of advanced techniques for gaining a deeper knowledge of their pharmacological properties. Herein, we report a novel chemical approach for the robust attachment of commercial fluorescent dyes to the exosome surface with covalent binding. The applicability of the methodology was tested on milk and cancer cell-derived exosomes (from U87 and B16F10 cancer cells). We demonstrated that fluorescent labeling did not modify the original physicochemical properties of exosomes. We tested this nanoprobe in cell cultures and healthy mice to validate its use for in vitro and in vivo applications. We confirmed that these fluorescently labeled exosomes could be successfully visualized with optical imaging.

8.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486215

RESUMEN

Over the last decade, exosomes from diverse biological sources have been proposed as new natural platforms in drug delivery. Translation of these nanometric tools to clinical practice requires deep knowledge of their pharmacokinetic properties and biodistribution. The pharmacokinetic properties of exosomes are sometimes evaluated using biochemical and histological techniques that are considerably invasive. As an alternative, we present radiochemical labeling of milk-derived exosomes based on reduced 99mTc (IV) without modifying biological and physicochemical properties. This approach enables longitudinal tracking of natural exosomes by non-invasive single photon emission computed tomography (SPECT) imaging and the evaluation of their pharmacokinetic properties according to the route of administration.

9.
Basic Res Cardiol ; 115(3): 33, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32291522

RESUMEN

Nonrevascularizable coronary artery disease is a frequent cause of hibernating myocardium leading to heart failure (HF). Currently, there is a paucity of therapeutic options for patients with this condition. There is a lack of animal models resembling clinical features of hibernating myocardium. Here we present a large animal model of hibernating myocardium characterized by serial multimodality imaging. Yucatan minipigs underwent a surgical casein ameroid implant around the proximal left anterior descending coronary artery (LAD), resulting in a progressive obstruction of the vessel. Pigs underwent serial multimodality imaging including invasive coronary angiography, cardiac magnetic resonance (CMR), and hybrid 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT). A total of 43 pigs were operated on and were followed for 120 ± 37 days with monthly multimodality imaging. 24 pigs (56%) died during the follow-up. Severe LAD luminal stenosis was documented in all survivors. In the group of 19 long-term survivors, 17 (90%) developed left ventricular systolic dysfunction [median LVEF of 35% (IQR 32.5-40.5%)]. In 17/17, at-risk territory was viable on CMR and 14 showed an increased glucose uptake in the at-risk myocardium on 18FDG-PET/CT. The present pig model resembles most of the human hibernated myocardium characteristics and associated heart failure (systolic dysfunction, viable myocardium, and metabolic switch to glucose). This human-like model might be used to test novel interventions for nonrevascularizable coronary artery disease and ischemia heart failure as a previous stage to clinical trials.


Asunto(s)
Modelos Animales de Enfermedad , Aturdimiento Miocárdico/patología , Animales , Angiografía Coronaria/métodos , Insuficiencia Cardíaca/patología , Imagen Multimodal/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Porcinos , Porcinos Enanos , Investigación Biomédica Traslacional
10.
Front Pharmacol ; 11: 603771, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408632

RESUMEN

Binge drinking, i.e., heavy episodic drinking in a short time, has recently become an alarming societal problem with negative health impact. However, the harmful effects of acute alcohol injury in the gut-liver axis remain elusive. Hence, we focused on the physiological and pathological changes and the underlying mechanisms of experimental binge drinking in the context of the gut-liver axis. Eight-week-old mice with a C57BL/6 background received a single dose (p.o.) of ethanol (EtOH) [6 g/kg b.w.] as a preclinical model of acute alcohol injury. Controls received a single dose of PBS. Mice were sacrificed 8 h later. In parallel, HepaRGs and Caco-2 cells, human cell lines of differentiated hepatocytes and intestinal epithelial cells intestinal epithelial cells (IECs), respectively, were challenged in the presence or absence of EtOH [0-100 mM]. Extracellular vesicles (EVs) isolated by ultracentrifugation from culture media of IECs were added to hepatocyte cell cultures. Increased intestinal permeability, loss of zonula occludens-1 (ZO-1) and MUCIN-2 expression, and alterations in microbiota-increased Lactobacillus and decreased Lachnospiraceae species-were found in the large intestine of mice exposed to EtOH. Increased TUNEL-positive cells, infiltration of CD11b-positive immune cells, pro-inflammatory cytokines (e.g., tlr4, tnf, il1ß), and markers of lipid accumulation (Oil Red O, srbep1) were evident in livers of mice exposed to EtOH, particularly in females. In vitro experiments indicated that EVs released by IECs in response to ethanol exerted a deleterious effect on hepatocyte viability and lipid accumulation. Overall, our data identified a novel mechanism responsible for driving hepatic injury in the gut-liver axis, opening novel avenues for therapy.

11.
Med Mycol ; 57(4): 496-503, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30212901

RESUMEN

In cases where catheter-related candidemia (CRC) must be managed without catheter withdrawal, antifungal lock therapy using highly active anti-biofilm (HAAB) agents is combined with systemic treatment. However, the activity of HAAB agents has never been studied in in vivo models using bioluminescence. We assessed the efficacy of micafungin using a bioluminescent Candida albicans SKCA23-ACTgLuc strain in an animal model of CRC. We divided 33 female Wistar rats into five groups: sham (A), infected nontreated (B), treated with lock therapy (0.16 mg/ml) (C), systemically treated only (1 mg/kg) (D), and systemically treated+lock (E). Catheters were colonized 24 h before insertion into the femoral vein (day 0). Treatment started on day 1 and lasted 7 days, followed by 7 days of surveillance. Bioluminescence assays were carried out on days 1, 3, 5, and 14, together with daily monitoring of clinical variables. Postmortem microbiological cultures from the catheter and several tissue samples were also obtained. Overall, 28 rats (84.8%) completed the study. Group B animals showed significant weight loss at days 2, 4, and 5 compared with groups C and D (P < .05). In group B, no animals survived after day 7, 75% had CRC, and bioluminescence remained constant 5 days after catheter implantation. Positive catheter culture rates in groups C, D, and E were, respectively, 83.3%, 62.5%, and 25.0% (P = .15). Micafungin proved to be a HAAB agent when administered both systemically and in lock therapy in an animal model of CRC, although the bioluminescence signal persists after treatment. This persistence should be further analyzed.


Asunto(s)
Antifúngicos/administración & dosificación , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candidemia/tratamiento farmacológico , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Micafungina/administración & dosificación , Estructuras Animales/microbiología , Animales , Antifúngicos/farmacología , Catéteres/microbiología , Modelos Animales de Enfermedad , Femenino , Mediciones Luminiscentes , Micafungina/farmacología , Ratas Wistar , Análisis de Supervivencia , Resultado del Tratamiento
12.
Carbohydr Res ; 472: 16-22, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30428395

RESUMEN

Trehalose analogues bearing fluorescent and click chemistry tags have been developed as probes of bacterial trehalose metabolism, but these tools have limitations with respect to in vivo imaging applications. Here, we report the radiosynthesis of the 18F-modified trehalose analogue 2-deoxy-2-[18F]fluoro-d-trehalose ([18F]-2-FDTre), which in principle can be used in conjunction with positron emission tomography (PET) imaging to allow in vivo imaging of trehalose metabolism in various contexts. A chemoenzymatic method employing the thermophilic TreT enzyme from Thermoproteus tenax was used to rapidly (15-20 min), efficiently (70% radiochemical yield; ≥ 95% radiochemical purity), and reproducibly convert the commercially available radiotracer 2-deoxy-2-[18F]fluoro-d-glucose ([18F]-2-FDG) into the target radioprobe [18F]-2-FDTre in a single step; both manual and automated syntheses were performed with similar results. Cellular uptake experiments showed that radiosynthetic [18F]-2-FDTre was metabolized by Mycobacterium smegmatis but not by various mammalian cell lines, pointing to the potential future use of this radioprobe for selective PET imaging of infections caused by trehalose-metabolizing bacterial pathogens such as M. tuberculosis.


Asunto(s)
Radioisótopos de Flúor/química , Mycobacterium smegmatis/ultraestructura , Trehalosa/análogos & derivados , Trehalosa/análisis , Línea Celular , Química Clic , Células HT29 , Humanos , Estructura Molecular , Mycobacterium smegmatis/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacocinética , Thermoproteus/enzimología , Trehalosa/química , Trehalosa/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-29936368

RESUMEN

We communicate the interference of a compound of the blood collection tube with the accuracy of a validated high-pressure liquid chromatography method with ultraviolet detection for quantifying voriconazole levels, which led to false positive results. This could have serious consequences for patient management. Our advice is to implement external assessment programs.


Asunto(s)
Antifúngicos/sangre , Análisis Químico de la Sangre/normas , Recolección de Muestras de Sangre , Monitoreo de Drogas/normas , Reacciones Falso Positivas , Voriconazol/sangre , Adulto , Recolección de Muestras de Sangre/instrumentación , Recolección de Muestras de Sangre/normas , Niño , Cromatografía Líquida de Alta Presión , Humanos
14.
J Nucl Med ; 59(8): 1225-1233, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29572254

RESUMEN

The DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is overexpressed in glioblastoma, with overall low expression in healthy brain tissue. Paired with the availability of specific small molecule inhibitors, PARP-1 is a near-ideal target to develop novel radiotherapeutics to induce DNA damage and apoptosis in cancer cells, while sparing healthy brain tissue. Methods: We synthesized an 131I-labeled PARP-1 therapeutic and investigated its pharmacology in vitro and in vivo. A subcutaneous tumor model was used to quantify retention times and therapeutic efficacy. A potential clinical scenario, intratumoral convection-enhanced delivery, was mimicked using an orthotopic glioblastoma model combined with an implanted osmotic pump system to study local administration of 131I-PARPi (PARPi is PARP inhibitor). Results:131I-PARPi is a 1(2H)-phthalazinone, similar in structure to the Food and Drug Administration-approved PARP inhibitor AZD-2281. In vitro studies have shown that 131I-PARPi and AZD-2281 share similar pharmacologic profiles. 131I-PARPi delivered 134.1 cGy/MBq intratumoral injected activity. Doses to nontarget tissues, including liver and kidney, were significantly lower. Radiation damage and cell death in treated tumors were shown by p53 activation in U87-MG cells transfected with a p53-bioluminescent reporter. Treated mice showed significantly longer survival than mice receiving vehicle (29 vs. 22 d, P < 0.005) in a subcutaneous model. Convection-enhanced delivery demonstrated efficient retention of 131I-PARPi in orthotopic brain tumors, while quickly clearing from healthy brain tissue. Conclusion: Our results demonstrate 131I-PARPi's high potential as a therapeutic and highlight PARP's relevance as a target for radionuclide therapy. Radiation plays an integral role in brain tumor therapy, and radiolabeled PARP therapeutics could ultimately lead to improvements in the standard of care.


Asunto(s)
Glioblastoma/radioterapia , Terapia Molecular Dirigida , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Glioblastoma/patología , Ratones , Radiometría , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Proteína p53 Supresora de Tumor/metabolismo
15.
Mol Imaging Biol ; 18(3): 386-92, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26493053

RESUMEN

PURPOSE: The current study presents [(18)F]PARPi as imaging agent for PARP1 expression. PROCEDURES: [(18)F]PARPi was generated by conjugating a 2H-phthalazin-1-one scaffold to 4-[(18)F]fluorobenzoic acid. Biochemical assays, optical in vivo competition, biodistribution analysis, positron emission tomography (PET)/X-ray computed tomography, and PET/magnetic resonance imaging studies were performed in subcutaneous and orthotopic mouse models of glioblastoma. RESULTS: [(18)F]PARPi shows suitable pharmacokinetic properties for brain tumor imaging (IC50 = 2.8 ± 1.1 nM; logPCHI = 2.15 ± 0.41; plasma-free fraction = 63.9 ± 12.6 %) and accumulates selectively in orthotopic brain tumor tissue. Tracer accumulation in subcutaneous brain tumors was 1.82 ± 0.21 %ID/g, whereas in healthy brain, the uptake was only 0.04 ± 0.01 %ID/g. CONCLUSIONS: [(18)F]PARPi is a selective PARP1 imaging agent that can be used to visualize glioblastoma in xenograft and orthotopic mouse models with high precision and good signal/noise ratios. It offers new opportunities to non-invasively image tumor growth and monitor interventions.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/enzimología , Glioblastoma/diagnóstico por imagen , Glioblastoma/enzimología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Autorradiografía , Proteínas Sanguíneas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Radioisótopos de Flúor , Glioblastoma/patología , Semivida , Humanos , Imagen por Resonancia Magnética , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/sangre , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacocinética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Distribución Tisular/efectos de los fármacos , Tomografía Computarizada por Rayos X
16.
EJNMMI Res ; 5(1): 123, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26337803

RESUMEN

BACKGROUND: Although the understanding of the genetic and molecular basis of cancer has advanced significantly over the past several decades, imaging and treatment options for glioblastoma patients have been more limited (N Engl J Med 359:492-507, 2008). This is in part due to difficulties in diagnosing this disease early, combined with its diffuse, infiltrative growth. This study was aimed at the development of a novel diagnostic tool for glioblastoma through the synthesis of a small molecule based on radioiodinated poly(ADP-ribose)polymerase 1 (PARP1) targeted tracers. This PARP1 is a biomarker that is overexpressed in glioblastoma tissue, but has only low expression levels in the healthy brain (Neoplasia 16:432-40, 2014). METHODS: A library of PARP1 inhibitors (iodo-PARPis) was synthesized. Based on their pharmacokinetic properties and nuclear PARP1 binding, the most successful inhibitor was radiolabeled with (131)I and (124)I. Biodistribution as well as imaging experiments were performed in orthotopic and subcutaneous mouse models of glioblastoma. RESULTS: One member of our iodo-poly(ADP-ribose)polymerase 1 (PARP1) inhibitor library, I2-PARPi, shows promising biophysical properties for in vivo application. All synthesized tracers have IC50 values in the nanomolar range (9 ± 2-107 ± 4 nM) and were able to inhibit the uptake of a fluorescent PARP1 inhibitor analog (PARPi-FL). I2-PARPi was able to reduce the uptake of PARPi-FL by 78 ± 4 % in vivo. In mouse models of glioblastoma, we show that the radioiodinated inhibitor analog has high uptake in tumor tissue (U251 MG xenograft, tumor, 0.43 ± 0.06 %ID/g; brain, 0.01 ± 0.00 %ID/g; muscle, 0.03 ± 0.01 %ID/g; liver, 2.35 ± 0.57 %ID/g; thyroid, 0.24 ± 0.06 %ID/g). PET and SPECT imaging performed in orthotopic glioblastoma models with [(124)I]- and [(131)I]-I2-PARPi showed selective accumulation in the tumor tissue. These results were also verified using autoradiography of tumor sections, which displayed focal selective uptake of the tracer in the tumor regions as confirmed by histology. The uptake could be blocked through pre-injection of excess unlabeled PARP1 inhibitor (Olaparib). CONCLUSIONS: We have successfully synthesized and radioiodinated the PARP1 selective tracer I2-PARPi. The novel tracer shows selective binding to tumor tissue, both in vitro and in models of glioblastoma, and has the potential to serve as a selective PET imaging agent for brain tumors.

17.
Chemistry ; 21(29): 10450-6, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26096657

RESUMEN

The use of click chemistry reactions for the functionalization of nanoparticles is particularly useful to modify the surface in a well-defined manner and to enhance the targeting properties, thus facilitating clinical translation. Here it is demonstrated that olefin metathesis can be used for the chemoselective functionalization of iron oxide nanoparticles with three different examples. This approach enables, in one step, the synthesis and functionalization of different water-stable magnetite-based particles from oleic acid-coated counterparts. The surface of the nanoparticles was completely characterized showing how the metathesis approach introduces a large number of hydrophilic molecules on their coating layer. As an example of the possible applications of these new nanocomposites, a focus was taken on atherosclerosis plaques. It is also demonstrated how the in vitro properties of one of the probes, particularly its Ca(2+) -binding properties, mediate their final in vivo use; that is, the selective accumulation in atherosclerotic plaques. This opens promising new applications to detect possible microcalcifications associated with plaque vulnerability. The accumulation of the new imaging tracers is demonstrated by in vivo magnetic resonance imaging of carotids and aorta in the ApoE(-/-) mouse model and the results were confirmed by histology.


Asunto(s)
Alquenos/química , Aorta/química , Aorta/patología , Aterosclerosis/patología , Compuestos Férricos/química , Nanopartículas/química , Placa Aterosclerótica/química , Placa Aterosclerótica/patología , Animales , Aterosclerosis/diagnóstico , Química Clic , Medios de Contraste , Imagen por Resonancia Magnética , Ratones
18.
Neoplasia ; 16(5): 432-40, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24970386

RESUMEN

New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Proteínas Fluorescentes Verdes , Neuroimagen/métodos , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Western Blotting , Línea Celular , Modelos Animales de Enfermedad , Inhibidores Enzimáticos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/farmacología , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Ftalazinas/química , Ftalazinas/farmacología , Piperazinas/química , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1
19.
Nanomaterials (Basel) ; 4(2): 408-438, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28344230

RESUMEN

The production of magnetic nanoparticles of utmost quality for biomedical imaging requires several steps, from the synthesis of highly crystalline magnetic cores to the attachment of the different molecules on the surface. This last step probably plays the key role in the production of clinically useful nanomaterials. The attachment of the different biomolecules should be performed in a defined and controlled fashion, avoiding the random adsorption of the components that could lead to undesirable byproducts and ill-characterized surface composition. In this work, we review the process of creating new magnetic nanomaterials for imaging, particularly for the detection of atherosclerotic plaque, in vivo. Our focus will be in the different biofunctionalization techniques that we and several other groups have recently developed. Magnetic nanomaterial functionalization should be performed by chemoselective techniques. This approach will facilitate the application of these nanomaterials in the clinic, not as an exception, but as any other pharmacological compound.

20.
Microsc Res Tech ; 74(7): 577-91, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21484943

RESUMEN

The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Terapia Genética/métodos , Imagen por Resonancia Magnética/métodos , Nanoconjugados/química , Animales , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Microscopía Electrónica de Transmisión , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...