Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38003437

RESUMEN

Measurements of skin surface biomarkers have enormous value for the detailed assessment of skin conditions, both for clinical application and in skin care. The main goals of the current study were to assess whether expression patterns of skin surface hBD-1, hBD-2, IL-1α, CXCL-1, and CXCL-8, examples of proteins known to be involved in psoriasis pathology, are associated with disease severity and whether expression patterns of these proteins on the skin surface can be used to measure pharmacodynamic effects of biological therapy. In this observational study using transdermal analysis patch (TAP), levels of skin surface IL-1α, hBD-1, hBD-2, CXCL-1/2, and CXCL-8 of psoriasis vulgaris (PV) patients over biological therapy were assessed. The Psoriasis Area Severity Index (PASI) and local score for erythema, induration, and desquamation were determined from the exact same skin area as FibroTx TAP measurements. Thirty-seven adult PV patients were included, of which twenty-three were subjected to anti-TNF-α, seven to anti-IL-17A, and seven to anti-IL12/IL-23 therapy. Significantly higher levels of hBD-1, hBD-2, CXCL-1/2, and CXCL-8 were detected on lesional skin compared to the non-lesional skin of the PV patients. In contrast, lower levels of IL-1α were found in lesional skin compared to non-lesional skin. In addition, we observed that the biomarker expression levels correlate with disease severity. Further, we confirmed that changes in the expression levels of skin surface biomarkers during biological therapy correlate with treatment response. Biomarker expression patterns in response to treatment differed somewhat between treatment subtypes. We observed that, in the case of anti-TNF-α therapy, an increase after a steady decrease in the expression levels of CXCL-1/2 and CXCL-8 occurred before the change in clinical scores. Moreover, response kinetics of skin surface proteins differs between the applied therapies-hBD2 expression responds quickly to anti-IL-17A therapy, CXCL-1/2 to anti-IL-12/23, and levels of CXCL-8 are rapidly down-regulated by IL-17A and IL-12/23 therapy. Our findings confirm that the skin surface hBD-2, IL-1α, CXCL-1/2, and CXCL-8 are markers for the psoriasis severity. Further, data obtained during this study give the basis for the conclusion that skin surface proteins CXCL-1/2 and CXCL-8 may have value as therapeutic biomarkers, thus confirming that measuring the 'molecular root' of inflammation appears to have value in scoring disease severity on its own.


Asunto(s)
Proteínas de la Membrana , Psoriasis , Adulto , Humanos , Proteínas de la Membrana/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Piel/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Terapia Biológica , Interleucina-12/metabolismo , Biomarcadores/metabolismo
2.
Front Med (Lausanne) ; 10: 1072160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936209

RESUMEN

To improve the care of patients with chronic inflammatory skin conditions, such as psoriasis, there is a need for diagnostic methods that can facilitate personalized medicine. This exploratory pilot study aimed to determine whether non-invasive measurements of inflammation-related proteins from psoriatic skin can be sampled using the FibroTx Transdermal Analysis Patch (TAP) to assess disease severity and monitor pharmacodynamic changes. Ten healthy volunteers and 44 psoriasis vulgaris patients were enrolled in the exploratory pilot study. Skin surface protein measurements for healthy and lesional skin were performed using TAP. Patients' scores of psoriasis activity and severity (PASI) were documented, and differences in the thickness of skin layers were determined using sonography. The study assessed the skin surface protein levels of psoriasis patients undergoing whole-body treatment with narrow-band UVB to evaluate whether the levels of the skin surface proteins IL-1α, IL-1RA CXCL-1/2, and hBD-1 were associated with the disease activity and severity measurements. Using TAP technology, it was observed that there were clear differences in levels of IL-1α, IL-1RA, CXCL-1/2, and hBD-1 between psoriasis lesional and non-lesional skin. In addition, a positive correlation between CXCL-1/2 and desquamation, and between CXCL-1/2 and SLEB thickness was observed. During UVB treatment, the TAP measurements revealed a clear reduction of IL-1RA, CXCL 1/2, and hBD-1 on lesional skin. Further, skin surface measurements of IL-1RA and CXCL-1/2 displayed a different profile than those achieved by visual scoring of local inflammation, thus indicating that measuring the 'molecular root' of inflammation appears to have value as an objective, non-invasive biomarker measurement for scoring disease severity.

3.
Biomark Res ; 2: 20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25785188

RESUMEN

BACKGROUND: The skin proteome contains valuable information on skin condition, but also on how skin may evolve in time and may respond to treatments. Despite the potential of measuring regulatory-, effector- and structural proteins in the skin for biomarker applications in clinical dermatology and skin care, convenient diagnostic tools are lacking. The aim of the present study was to develop a highly versatile and non-invasive diagnostic tool for multiplex measurements of protein biomarkers from the surface of skin. RESULTS: The Transdermal Analyses Patch (TAP) is a novel molecular diagnostic tool that has been developed to capture biomarkers directly from skin, which are quantitatively analyzed in spot-ELISA assays. Optimisation of protocols for TAP production and biomarker analyses makes TAP measurements highly specific and reproducible. In measurements of interleukin-1α (IL-1α), IL-1 receptor antagonist (IL-1RA) and human ß-defensin (hBD-1) from healthy skin, TAP appears far more sensitive than skin lavage-based methods using ELISA. No side-effects were observed using TAP on human skin. CONCLUSION: TAP is a practical and valuable new skin diagnostic tool for measuring protein-based biomarkers from skin, which is convenient to use for operators, with minimal burden for patients.

4.
J Virol ; 85(7): 3315-29, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21248030

RESUMEN

We found that recircularized high-risk (type 16 and 18) and low-risk mucosal (type 6b and 11) and cutaneous (type 5 and 8) human papillomavirus (HPV) genomes replicate readily when delivered into U2OS cells by electroporation. The replication efficiency is dependent on the amount of input HPV DNA and can be followed for more than 3 weeks in proliferating cell culture without selection. Cotransfection of recircularized HPV genomes with a linear G418 resistance marker plasmid has allowed subcloning of cell lines, which, in a majority of cases, carry multicopy episomal HPV DNA. Analysis of the HPV DNA status in these established cell lines showed that HPV genomes exist in these cells as stable extrachromosomal oligomers. When the cell lines were cultivated as confluent cultures, a 3- to 10-fold amplification of the HPV genomes per cell was induced. Two-dimensional (2D) agarose gel electrophoresis confirmed amplification of mono- and oligomeric HPV genomes in these confluent cell cultures. Amplification occurred as a result of the initiation of semiconservative two-dimensional replication from one active origin in the HPV oligomer. Our data suggest that the system described here might be a valuable, cost-effective, and efficient tool for use in HPV DNA replication studies, as well as for the design of cell-based assays to identify potential inhibitors of all stages of HPV genome replication.


Asunto(s)
Membrana Mucosa/virología , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Piel/virología , Replicación Viral , Línea Celular , ADN Circular/genética , Electroforesis en Gel de Agar , Electroforesis en Gel Bidimensional , Electroporación , Genoma Viral , Humanos , Papillomaviridae/aislamiento & purificación , Factores de Tiempo , Cultivo de Virus/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA