RESUMEN
During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Trazado de Contacto , Pandemias , Senegal/epidemiologíaRESUMEN
Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls. Assays were further validated in 3 African countries with variable endemic settings. The receiver operating curve was used to evaluate the assay performances. The N- and S-RBD-based ELISA assays performances, in Tunisia, were very high (AUC: 0.966 and 0.98, respectively, p < 0.0001). Cross-validation analysis showed similar performances in different settings. Cross-reactivity, with malaria infection, against viral antigens, was noticed. In head-to-head comparisons with different commercial assays, the developed assays showed high agreement. This study demonstrates, the added value of the developed serological assays in low-income countries, particularly in ethnically diverse populations with variable exposure to local endemic infectious diseases.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Ensayo de Inmunoadsorción Enzimática , Túnez/epidemiología , Anticuerpos AntiviralesRESUMEN
The explosive emergence of Zika virus (ZIKV) across the Pacific and Americas since 2007 was associated with hundreds of thousands of human cases and severe outcomes, including congenital microcephaly caused by ZIKV infection during pregnancy. Although ZIKV was first isolated in Uganda, Africa has so far been exempt from large-scale ZIKV epidemics, despite widespread susceptibility among African human populations. A possible explanation for this pattern is natural variation among populations of the primary vector of ZIKV, the mosquito Aedes aegypti. Globally invasive populations of Ae. aegypti outside of Africa are considered effective ZIKV vectors because they are human specialists with high intrinsic ZIKV susceptibility, whereas African populations of Ae. aegypti across the species' native range are predominantly generalists with low intrinsic ZIKV susceptibility, making them less likely to spread viruses in the human population. We test this idea by studying a notable exception to the patterns observed across most of Africa: Cape Verde experienced a large ZIKV outbreak in 2015 to 2016. We find that local Ae. aegypti in Cape Verde have substantial human-specialist ancestry, show a robust behavioral preference for human hosts, and exhibit increased susceptibility to ZIKV infection, consistent with a key role for variation among mosquito populations in ZIKV epidemiology. These findings suggest that similar human-specialist populations of Ae. aegypti in the nearby Sahel region of West Africa, which may be expanding in response to rapid urbanization, could serve as effective vectors for ZIKV in the future.
Asunto(s)
Aedes , Epidemias , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Virus Zika/fisiología , Cabo Verde , Saliva , Mosquitos VectoresRESUMEN
BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic has spread from China to the rest of the world. Africa seems less impacted with lower number of cases and deaths than other continents. Senegal recorded its first case on March 2, 2020. We present here data collected from March 2 to October 31, 2020 in Senegal. METHODS: Socio-demographic, epidemiological, clinical and virological information were collected on suspected cases. To determine factors associated with diagnosed infection, symptomatic disease and death, multivariable binary logistic regression and log binomial models were used. Epidemiological parameters such as the reproduction number and growth rate were estimated. RESULTS: 67,608 suspected cases were tested by the IPD laboratories (13,031 positive and 54,577 negative). All age categories were associated with SARS-CoV-2 infection, but also patients having diabetes or hypertension or other cardiovascular diseases. With diagnosed infection, patients over 65 years and those with hypertension and cardiovascular disease and diabetes were highly associated with death. Patients with co-morbidities were associated with symptomatic disease, but only the under 15 years were not associated with. Among infected, 27.67% were asymptomatic (40.9% when contacts were systematically tested; 12.11% when only symptomatic or high-risk contacts were tested). Less than 15 years-old were mostly asymptomatic (63.2%). Dakar accounted for 81.4% of confirmed cases. The estimated mean serial interval was 5.57 (± 5.14) days. The average reproduction number was estimated at 1.161 (95%CI: 1.159-1.162), the growth rate was 0.031 (95%CI: 0.028-0.034) per day. CONCLUSIONS: Our findings indicated that factors associated with symptomatic COVID-19 and death are advanced age (over 65 years-old) and comorbidities such as diabetes and hypertension and cardiovascular disease.
Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Diabetes Mellitus , Hipertensión , Adolescente , Anciano , COVID-19/epidemiología , Diabetes Mellitus/epidemiología , Humanos , Hipertensión/epidemiología , Pandemias , SARS-CoV-2 , Senegal/epidemiologíaRESUMEN
Objectives: A nationwide cross-sectional epidemiological survey was conducted to capture the true extent of coronavirus disease 2019 (COVID-19) exposure in Senegal. Methods: Multi-stage random cluster sampling of households was performed between October and November 2020, at the end of the first wave of COVID-19 transmission. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies were screened using three distinct ELISA assays. Adjusted prevalence rates for the survey design were calculated for each test separately, and thereafter combined. Crude and adjusted prevalence rates based on test performance were estimated to assess the seroprevalence. As some samples were collected in high malaria endemic areas, the relationship between SARS-CoV-2 seroreactivity and antimalarial humoral immunity was also investigated. Results: Of the 1463 participants included in this study, 58.8% were female and 41.2% were male; their mean age was 29.2 years (range 0.20-84.8.0 years). The national seroprevalence was estimated at 28.4% (95% confidence interval 26.1-30.8%). There was substantial regional variability. All age groups were impacted, and the prevalence of SARS-CoV-2 was comparable in the symptomatic and asymptomatic groups. An estimated 4 744 392 (95% confidence interval 4 360 164-5 145 327) were potentially infected with SARS-CoV-2 in Senegal, while 16 089 COVID-19 RT-PCR laboratory-confirmed cases were reported by the national surveillance. No correlation was found between SARS-CoV-2 and Plasmodium seroreactivity. Conclusions: These results provide a better estimate of SARS-CoV-2 dissemination in the Senegalese population. Preventive and control measures need to be reinforced in the country and especially in the south border regions.
RESUMEN
BACKGROUND: The Democratic Republic of the Congo has confronted 13 outbreaks of Ebola virus disease since 1976. Rapid diagnostic tests (RDTs) detecting viral antigens have been developed to circumvent difficulties encountered with RT-PCR for diagnosis in remote low-resource settings, but there is still uncertainty about their performance characteristics and usability during outbreaks. We aimed to assess the field performance of three antigen detection RDTs compared with the gold-standard Cepheid GeneXpert Ebola assay results. METHODS: We conducted a retrospective, multicentre observational study using complete and de-identified databases of five mobile laboratories (managed by the Institut National de Recherche Biomédicale) to assess the performance of three Ebola virus disease RDTs (QuickNavi-Ebola, OraQuick Ebola Rapid Antigen Test, and Coris EBOLA Ag K-SeT rapid test) run on blood samples of patients with suspected Ebola virus disease in direct comparison with the Cepheid GeneXpert Ebola assay reference test during the 2018-20 outbreak in the eastern Democratic Republic of the Congo. We estimated the sensitivity and specificity of each test through generalised linear mixed models against the GeneXpert Ebola assay reference test and corrected for cycle threshold value and random site effects. FINDINGS: 719 (7·9%) of 9157 samples had a positive GeneXpert Ebola assay result. The QuickNavi-Ebola RDT had a sensitivity of 87·4% (95% CI 63·6-96·8) around the mean cycle threshold value and a specificity of 99·6% (99·3-99·8). The OraQuick Ebola Rapid Antigen Test had a sensitivity of 57·4% (95% CI 38·8-75·8) and specificity of 98·3% (97·5-99·0), and the Coris EBOLA Ag K-SeT rapid test had a sensitivity of 38·9% (23·0-63·6) against the GeneXpert Ebola assay reference and specificity of 97·4% (85·3-99·6). The QuickNavi-Ebola RDT showed a robust performance with good sensitivity, particularly with increasing viral loads (ie, low cycle threshold values), and specificity. INTERPRETATION: The three RDTs evaluated did not achieve the desired sensitivity and specificity of the WHO target product profile. Although the RDTs cannot triage and rule out Ebola virus infection among clinical suspects, they can still help to sort people with suspected Ebola virus disease into high-risk and low-risk groups while waiting for GeneXpert Ebola assay reference testing. FUNDING: None. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , República Democrática del Congo/epidemiología , Pruebas Diagnósticas de Rutina , Brotes de Enfermedades , Ebolavirus/genética , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects.
Asunto(s)
Infección por el Virus Zika/mortalidad , Infección por el Virus Zika/virología , Virus Zika/fisiología , Virus Zika/patogenicidad , Aedes/fisiología , Aedes/virología , África , Animales , Asia , Femenino , Humanos , Masculino , Ratones , Filogenia , Virulencia , Virus Zika/clasificación , Virus Zika/genética , Infección por el Virus Zika/transmisiónRESUMEN
In March 2020, the SARS-CoV-2 virus outbreak was declared as a world pandemic by the World Health Organization (WHO). The only measures for controlling the outbreak are testing and isolation of infected cases. Molecular real-time polymerase chain reaction (PCR) assays are very sensitive but require highly equipped laboratories and well-trained personnel. In this study, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay. RdRP, E, and N RT-RPA assays required approximately 15 min to amplify 2, 15, and 15 RNA molecules of molecular standard/reaction, respectively. RdRP and E RT-RPA assays detected SARS-CoV-1 and 2 genomic RNA, whereas the N RT-RPA assay identified only SARS-CoV-2 RNA. All established assays did not cross-react with nucleic acids of other respiratory pathogens. The RT-RPA assay's clinical sensitivity and specificity in comparison to real-time RT-PCR (n = 36) were 94 and 100% for RdRP; 65 and 77% for E; and 83 and 94% for the N RT-RPA assay. The assays were deployed to the field, where the RdRP RT-RPA assays confirmed to produce the most accurate results in three different laboratories in Africa (n = 89). The RPA assays were run in a mobile suitcase laboratory to facilitate the deployment at point of need. The assays can contribute to speed up the control measures as well as assist in the detection of COVID-19 cases in low-resource settings.
Asunto(s)
COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas/metabolismo , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Humanos , Sensibilidad y EspecificidadRESUMEN
We investigated the dynamics of seroconversion in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. During March 29-May 22, 2020, we collected serum samples and associated clinical data from 177 persons in London, UK, who had SARS-CoV-2 infection. We measured IgG against SARS-CoV-2 and compared antibody levels with patient outcomes, demographic information, and laboratory characteristics. We found that 2.0%-8.5% of persons did not seroconvert 3-6 weeks after infection. Persons who seroconverted were older, were more likely to have concurrent conditions, and had higher levels of inflammatory markers. Non-White persons had higher antibody concentrations than those who identified as White; these concentrations did not decline during follow-up. Serologic assay results correlated with disease outcome, race, and other risk factors for severe SARS-CoV-2 infection. Serologic assays can be used in surveillance to clarify the duration and protective nature of humoral responses to SARS-CoV-2 infection.
Asunto(s)
COVID-19/sangre , COVID-19/inmunología , Inmunoglobulina G/sangre , SARS-CoV-2 , Seroconversión , Adulto , Anciano , Anticuerpos Antivirales/sangre , COVID-19/fisiopatología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world's tropical belt over the past four centuries, after the evolution of a "domestic" form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector-host contact but also as a result of enhanced vector susceptibility.
Asunto(s)
Aedes/virología , Interacciones Microbiota-Huesped/genética , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Aedes/genética , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Mosquitos Vectores/genéticaRESUMEN
BACKGROUND: Past and recent outbreaks have highlighted the vulnerability of humans to infectious diseases, which represent serious economic and health security threats. A paradigm shift in the management of sanitary crises is urgently needed. Based on lessons from the 2014 Ebola outbreak, the Praesens Foundation has developed an all-terrain mobile biosafety laboratory (MBS-Lab) for effective field diagnostics capabilities. OBJECTIVE: The aim of the study was to train African teams and run a field evaluation of the MBS-Lab, including robustness, technical and operational sustainability, biosafety, connectivity, turn-around times for testing and result delivery. METHODS: The MBS-Lab was deployed in Senegal in October 2017 for a six-month field assessment under various ecological conditions and was mobilised during the dengue outbreaks in 2017 and 2018. RESULTS: The MBS-Lab can be considered an off-grid solution that addresses field challenges with regard to working conditions, mobility, deployment, environment and personnel safety. Blood (n = 398) and nasal swab (n = 113) samples were collected from 460 study participants for molecular screening for acute febrile illnesses and respiratory infections. The results showed that malaria (particularly in Kédougou) and upper respiratory tract infections remain problematic. Suspected dengue samples were tested on board during the dengue outbreaks in 2017 (882 tests; 128 confirmed cases) and 2018 (1736 tests; 202 confirmed cases). CONCLUSION: The MBS-Lab is an innovative solution for outbreak response, even in remote areas. The study demonstrated successful local ownership and community engagement. The MBS-Lab can also be considered an open mobile healthcare platform that offers various opportunities for field-deployable, point-of-care technologies for surveillance programmes.
RESUMEN
Hantaviruses cause hemorrhagic fever in humans worldwide. However, few hantavirus surveillance campaigns occur in Africa. We detected Seoul orthohantavirus in black rats in Senegal, although we did not find serologic evidence of this disease in humans. These findings highlight the need for increased surveillance of hantaviruses in this region.
Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Seoul , Orthohantavirus/genética , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Humanos , Ratas , Senegal/epidemiología , Seúl , Virus Seoul/genéticaAsunto(s)
Infecciones por Coronavirus/prevención & control , Enfermedades Endémicas , Malaria/epidemiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/transmisiónRESUMEN
An increasing number of insect-specific viruses are found around the world. Very recently, a new group of insect-specific viruses, the Mesoniviridae family, was discovered in Africa, Asia, North America and Australia. Here we report the first detection and isolation of a new virus belonging to Mesonivirus genus in Senegal, West Africa. The so-called Dianke virus was detected in 21 species of arthropods trapped in the eastern part of the country. Male individuals were also infected, supporting vertical transmission assertion of insect specific viruses. As described for other mesoniviruses, no viral replication was observed after inoculation of mammalian cells. Viral replication in mosquito cells was blocked at a temperature of 37⯰C, highlighting the importance of thermal conditions in Mesonivirus host restriction. Similar to our study, where a diverse range of arthropod vectors were found infected by the new virus, several studies have detected mesonivirus infection in mosquitoes with concerns for human health. It has been shown that dual infections in mosquito can alter viral infectivity. Due to their extensive geographic distribution and host range, as well as their use as potential disease control agents in vector populations, more studies should be done for a better knowledge of arthropod-restricted viruses prevalence and diversity.
Asunto(s)
Aedes/virología , Nidovirales/clasificación , Filogenia , Animales , Vectores Artrópodos/virología , Virus de Insectos/clasificación , Virus de Insectos/aislamiento & purificación , Masculino , Mosquitos Vectores/virología , Nidovirales/aislamiento & purificación , ARN Viral/genética , Senegal , Temperatura , Replicación ViralRESUMEN
In this study, a rapid method for the detection of Central and West Africa clades of Monkeypox virus (MPXV) using recombinase polymerase amplification (RPA) assay targeting the G2R gene was developed. MPXV, an Orthopoxvirus, is a zoonotic dsDNA virus, which is listed as a biothreat agent. RPA was operated at a single constant temperature of 42°C and produced results within 3 to 10 minutes. The MPXV-RPA-assay was highly sensitive with a limit of detection of 16 DNA molecules/µl. The clinical performance of the MPXV-RPA-assay was tested using 47 sera and whole blood samples from humans collected during the recent MPXV outbreak in Nigeria as well as 48 plasma samples from monkeys some of which were experimentally infected with MPXV. The specificity of the MPXV-RPA-assay was 100% (50/50), while the sensitivity was 95% (43/45). This new MPXV-RPA-assay is fast and can be easily utilised at low resource settings using a solar powered mobile suitcase laboratory.
Asunto(s)
Monkeypox virus/aislamiento & purificación , Mpox/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas , Animales , ADN Viral/genética , Humanos , Unidades Móviles de Salud , Mpox/virología , Monkeypox virus/genética , Técnicas de Amplificación de Ácido Nucleico/normas , Sensibilidad y Especificidad , Factores de Tiempo , Proteínas Virales/genéticaRESUMEN
BACKGROUND: The real-time generation of information about pathogen genomes has become a vital goal for transmission analysis and characterisation in rapid outbreak responses. In response to the recently established genomic capacity in the Democratic Republic of the Congo, we explored the real-time generation of genomic information at the start of the 2018 Ebola virus disease (EVD) outbreak in North Kivu Province. METHODS: We used targeted-enrichment sequencing to produce two coding-complete Ebola virus genomes 5 days after declaration of the EVD outbreak in North Kivu. Subsequent sequencing efforts yielded an additional 46 genomes. Genomic information was used to assess early transmission, medical countermeasures, and evolution of Ebola virus. FINDINGS: The genomic information demonstrated that the EVD outbreak in the North Kivu and Ituri Provinces was distinct from the 2018 EVD outbreak in Équateur Province of the Democratic Republic of the Congo. Primer and probe mismatches to Ebola virus were identified in silico for all deployed diagnostic PCR assays, with the exception of the Cepheid GeneXpert GP assay. INTERPRETATION: The first two coding-complete genomes provided actionable information in real-time for the deployment of the rVSVΔG-ZEBOV-GP Ebola virus envelope glycoprotein vaccine, available therapeutics, and sequence-based diagnostic assays. Based on the mutations identified in the Ebola virus surface glycoprotein (GP12) observed in all 48 genomes, deployed monoclonal antibody therapeutics (mAb114 and ZMapp) should be efficacious against the circulating Ebola virus variant. Rapid Ebola virus genomic characterisation should be included in routine EVD outbreak response procedures to ascertain efficacy of medical countermeasures. FUNDING: Defense Biological Product Assurance Office.
Asunto(s)
Anticuerpos Monoclonales/genética , Antivirales/uso terapéutico , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/genética , Genómica , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/epidemiología , República Democrática del Congo/epidemiología , Brotes de Enfermedades , Humanos , Contramedidas Médicas , Estudios RetrospectivosRESUMEN
Zika virus (ZIKV) is a mosquito-borne flavivirus. Homologous proteins of different flaviviruses display high degrees of sequence identity, especially within subgroups. This leads to extensive immunological cross-reactivity and corresponding problems for developing a ZIKV-specific serological assay. In this study, peptide microarrays were employed to identify individual ZIKV antibody targets with promise in differential diagnosis. A total of 1643 overlapping oligopeptides were synthesized and printed onto glass slides. Together, they encompass the full amino acid sequences of ZIKV proteomes of African, Brazilian, USA, and French Polynesian origins. The resulting ZIKV scanning microarray chips were used to screen three pools of sera from recent Zika outbreaks in Senegal and Cape Verde, in Brazil, and from overseas travelers returning to the EU. Together with a mixed pool of well characterized, archived sera of patients suffering from infections by dengue, yellow fever, tick-borne encephalitis, and West Nile viruses, a total of 42 sera went into the study. Sixty-eight antibody target regions were identified. Most of which were hitherto unknown. Alignments and sequence comparisons revealed 13 of which could be classified as bona fide ZIKV-specific. These identified antibody target regions constitute a founding set of analytical tools for serological discrimination of ZIKV from other flaviviruses.