Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(2): 127, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341408

RESUMEN

Glioblastoma (GBM) is a highly malignant brain tumour characterised by limited treatment options and poor prognosis. The tumour microenvironment, particularly the central hypoxic region of the tumour, is known to play a pivotal role in GBM progression. Cells within this region adapt to hypoxia by stabilising transcription factor HIF1-α, which promotes cell proliferation, dedifferentiation and chemoresistance. In this study we sought to examine the effects of NNC-55-0396, a tetralol compound which overactivates the unfolded protein response inducing apoptosis, using the organ-on-chip technology. We identified an increased sensitivity of the hypoxic core of the chip to NNC, which correlates with decreasing levels of HIF1-α in vitro. Moreover, NNC blocks the macroautophagic process that is unleashed by hypoxia as revealed by increased levels of autophagosomal constituent LC3-II and autophagy chaperone p62/SQSTM1. The specific effects of NNC in the hypoxic microenvironment unveil additional anti-cancer abilities of this compound and further support investigations on its use in combined therapies against GBM.


Asunto(s)
Bencimidazoles , Neoplasias Encefálicas , Ciclopropanos , Glioblastoma , Naftalenos , Tetralonas , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Hipoxia/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
2.
Cancer Res ; 79(8): 1857-1868, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30755443

RESUMEN

T-type Ca2+ channels (TTCC) have been identified as key regulators of cancer cell cycle and survival. In vivo studies in glioblastoma (GBM) murine xenografts have shown that drugs able to block TTCC in vitro (such as tetralol derivatives mibefradil/NNC-55-096, or different 3,4-dihydroquinazolines) slow tumor progression. However, currently available TTCC pharmacologic blockers have limited selectivity for TTCC and are unable to distinguish between TTCC isoforms. Here we analyzed the expression of TTCC transcripts in human GBM cells and show a prevalence of Cacna1g/Cav3.1 mRNAs. Infection of GBM cells with lentiviral particles carrying short hairpin RNA against Cav3.1 resulted in GBM cell death by apoptosis. We generated a murine GBM xenograft via subcutaneous injection of U87-MG GBM cells and found that tumor size was reduced when Cav3.1 expression was silenced. Furthermore, we developed an in vitro model of temozolomide-resistant GBM that showed increased expression of Cav3.1 accompanied by the activation of macroautophagy. We confirmed a positive correlation between Cav3.1 and autophagic markers in both GBM cultures and biopsies. Of note, Cav3.1 knockdown resulted in transcriptional downregulation of p62/SQSTM1 and deficient autophagy. Together, these data identify Cav3.1 channels as potential targets for slowing GBM progression and recurrence based on their role in regulating autophagy. SIGNIFICANCE: These findings identify Cav3.1 calcium channels as a molecular target to regulate autophagy and prevent progression and chemotherapeutic resistance in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/patología , Canales de Calcio Tipo T/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Canales de Calcio Tipo T/genética , Proliferación Celular , Progresión de la Enfermedad , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Autophagy ; 14(4): 619-636, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29313411

RESUMEN

WNT-CTNN1B signaling promotes cancer cell proliferation and stemness. Furthermore, recent evidence indicates that macroautophagy/autophagy regulates WNT signaling. Here we investigated the impact of inhibiting WNT signaling on autophagy in glioblastoma (GBM), a devastating brain tumor. Inhibiting TCF, or silencing TCF4 or CTNNB1/ß-catenin upregulated SQSTM1/p62 in GBM at transcriptional and protein levels and, in turn, autophagy. DKK1/Dickkopf1, a canonical WNT receptor antagonist, also induced autophagic flux. Importantly, TCF inhibition regulated autophagy through MTOR inhibition and dephosphorylation, and nuclear translocation of TFEB, a master regulator of lysosomal biogenesis and autophagy. TCF inhibition or silencing additionally affected GBM cell proliferation and migration. Autophagy induction followed by its blockade can promote cancer cell death. In agreement with this notion, halting both TCF-CTNNB1 and autophagy pathways decreased cell viability and induced apoptosis of GBM cells through a SQSTM1-dependent mechanism involving CASP8 (caspase 8). In vivo experiments further underline the therapeutic potential of such dual targeting in GBM.


Asunto(s)
Autofagia/efectos de los fármacos , ARN Interferente Pequeño/genética , Proteína Sequestosoma-1/metabolismo , beta Catenina/metabolismo , Autofagia/fisiología , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción 4/genética , beta Catenina/efectos de los fármacos
4.
Cancer Res ; 78(3): 603-609, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343521

RESUMEN

In the past decade, T-type Ca2+ channels (TTCC) have been unveiled as key regulators of cancer cell biology and thus have been proposed as chemotherapeutic targets. Indeed, in vitro and in vivo studies indicate that TTCC pharmacologic blockers have a negative impact on the viability of cancer cells and reduce tumor size, respectively. Consequently mibefradil, a TTCC blocker approved in 1997 as an antihypertensive agent but withdrawn in 1998 because of drug-drug interactions, was granted 10 years later the orphan drug status by the FDA to investigate its efficacy against brain, ovary, and pancreatic cancer. However, the existence of different channel isoforms with distinct physiologic roles, together with the lack of selective pharmacologic agents, has hindered a conclusive chemotherapeutic evaluation. Here, we review the available evidence on TTCC expression, value as prognostic markers, and effectiveness of their pharmacologic blockade on cancer cells in vitro and in preclinical models. We additionally summarize the status of clinical trials using mibefradil against glioblastoma multiforme. Finally, we discuss the future perspectives and the importance of further development of multidisciplinary research efforts on the consideration of TTCCs as biomarkers or targetable molecules in cancer. Cancer Res; 78(3); 603-9. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/química , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Humanos , Neoplasias/metabolismo , Neoplasias/patología
5.
J Cell Biochem ; 119(4): 3632-3640, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29231998

RESUMEN

ß-catenin is a central component of adherent junctions and a key effector of canonical Wnt signaling, in which dephosphorylated Ser/Thr ß-catenin regulates gene transcription. ß-catenin phosphorylation at Tyr142 (PTyr142 ß-catenin), which is induced by receptor and Src family Tyr kinases, represents a previously described ß-catenin switch from adhesive to migratory roles. In addition to classical ß-catenin roles, phosphorylated Ser/Thr ß-catenin and total ß-catenin were involved in centrosomal functions, including mitotic spindle formation and centrosome separation. Here we find that PTyr142 ß-catenin is present in centrosomes in non-transformed and glioblastoma cells and that, in contrast to the Ser/Thr phosphorylated ß-catenin, PTyr142 ß-catenin centrosomal levels drop in mitosis. Furthermore, we show that the inhibitor of Spleen Tyrosine Kinase (Syk) piceatannol decreases centrosomal PTyr142 ß-catenin levels, indicating that Syk regulates centrosome PTyr142 ß-catenin. Our findings suggest that PTyr142 ß-catenin and Syk may regulate centrosomal cohesion. This study highlights the contribution of different phosphorylated ß-catenin forms to the cell and centrosome cycles.


Asunto(s)
Centrosoma/metabolismo , Quinasa Syk/metabolismo , beta Catenina/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Humanos , Inmunoprecipitación , Ratones , Fosforilación , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...