RESUMEN
Purpose: Osteoprotegerin (OPG) plays an important role in the inhibition of osteoclast formation and bone resorption. Studies have reported lower OPG levels among women with a pathogenic variant (mutation) in the BRCA1 gene, and thus, may be at greater risk for skeletal bone loss. Thus, we investigated the association between circulating OPG and two validated markers of bone health: 1) bone fracture risk score (FRAX) and 2) bone mineral density (BMD), among BRCA mutation carriers. Methods: Women with a blood sample and clinical data were included in this analysis. An enzyme-linked immunosorbent assay (ELISA) was used to quantify serum OPG (pg/mL) and the 10-year risk of major osteoporotic fracture (FRAXmajor) and hip fracture (FRAXhip) (%) was estimated using a web-based algorithm. For a subset of women, lumbar spine BMD was previously assessed by dual x-ray absorptiometry (DXA)(T-score). A Mann-Whitney U test was used to evaluate the association between OPG and FRAX score, while linear regression was used to assess the association of OPG and BMD. Results: Among 701 women with a BRCA1 mutation, there was a significant (and unexpected) positive association between OPG levels and FRAX score (FRAXmajor: 2.12 (low OPG) vs. 2.53 (high OPG) P < 0.0001; FRAXhip: 0.27 (low OPG) vs. 0.44 (high OPG) P < 0.0001). In a subset with BMD measurement (n = 50), low serum OPG was associated with a significantly lower BMD T-score (-1.069 vs. -0.318; P = 0.04). Conclusion: Our findings suggest that women with inherently lower OPG may be at risk of lower BMD, the gold standard marker of bone disease. Due to the young age of our cohort, on-going studies are warranted to re-evaluate the association between OPG and FRAX in BRCA mutation carriers.
RESUMEN
Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.
Asunto(s)
Carcinoma Ductal Pancreático , Movimiento Celular , Exocitosis , Lisosomas , Invasividad Neoplásica , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinasas , Monoéster Fosfórico Hidrolasas , Canales de Potencial de Receptor Transitorio , Animales , Humanos , Masculino , Ratones , Calcio/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Lisosomas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genéticaRESUMEN
Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3ß. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.
Asunto(s)
Aciltransferasas , Factor de Crecimiento Epidérmico , Receptores ErbB , Fosfatos de Fosfatidilinositol , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Aciltransferasas/metabolismo , Receptores ErbB/metabolismo , Línea Celular Tumoral , Fosforilación , Proliferación CelularRESUMEN
PARP inhibitors (PARPi) are efficacious in BRCA1-null tumors; however, their utility is limited in tumors with functional BRCA1. We hypothesized that pharmacologically reducing BRCA1 protein levels could enhance PARPi effectiveness in BRCA1 wild-type tumors. To identify BRCA1 downregulating agents, we generated reporter cell lines using CRISPR-mediated editing to tag endogenous BRCA1 protein with HiBiT. These reporter lines enable the sensitive measurement of BRCA1 protein levels by luminescence. Validated reporter cells were used in a pilot screen of epigenetic-modifying probes and a larger screen of more than 6,000 compounds. We identified 7 compounds that could downregulate BRCA1-HiBiT expression and synergize with olaparib. Three compounds, N-acetyl-N-acetoxy chlorobenzenesulfonamide (NANAC), A-443654, and CHIR-124, were validated to reduce BRCA1 protein levels and sensitize breast cancer cells to the toxic effects of olaparib. These results suggest that BRCA1-HiBiT reporter cells hold promise in developing agents to improve the clinical utility of PARPi.
RESUMEN
BACKGROUND: Lower levels of osteoprotegerin (OPG), the decoy receptor for receptor activator of NFκB (RANK)-ligand, have been reported among women with a BRCA1 mutation, suggesting OPG may be marker of cancer risk. Whether various reproductive, hormonal, or lifestyle factors impact OPG levels in these women is unknown. METHODS: BRCA1 mutation carriers enrolled in a longitudinal study, no history of cancer, and a serum sample for OPG quantification, were included. Exposure information was collected through self-reported questionnaire at study enrollment and every 2 years thereafter. Serum OPG levels (pg/mL) were measured using an ELISA, and generalized linear models were used to assess the associations between reproductive, hormonal, and lifestyle exposures at the time of blood collection with serum OPG. Adjusted means were estimated using the fully adjusted model. RESULTS: A total of 701 women with a median age at blood collection of 39.0 years (18.0-82.0) were included. Older age (Spearman r = 0.24; P < 0.001) and current versus never smoking (98.82 vs. 86.24 pg/mL; Pcat < 0.001) were associated with significantly higher OPG, whereas ever versus never coffee consumption was associated with significantly lower OPG (85.92 vs. 94.05 pg/mL; Pcat = 0.03). There were no other significant associations for other exposures (P ≥ 0.06). The evaluated factors accounted for 7.5% of the variability in OPG. CONCLUSIONS: OPG is minimally influenced by hormonal and lifestyle factors among BRCA1 mutation carriers. IMPACT: These findings suggest that circulating OPG levels are not impacted by non-genetic factors in high-risk women.
Asunto(s)
Genes BRCA1 , Osteoprotegerina , Adulto , Femenino , Humanos , Proteína BRCA1/genética , Estudios Longitudinales , Osteoprotegerina/genética , FumarRESUMEN
BACKGROUND: Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS: We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS: We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS: Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.
Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , MicroARNs , Humanos , Animales , Ratones , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias de la Mama/patología , Células Madre Mesenquimatosas/metabolismo , Células del Estroma/metabolismo , Microambiente TumoralRESUMEN
Mitochondrial diseases are one of the largest groups of neurological genetic disorders. Despite continuous efforts of the scientific community, no cure has been developed, and most treatment strategies rely on managing the symptoms. After the success of coronavirus disease 2019 (COVID-19) mRNA vaccines and accelerated US Food and Drug Administration (FDA) approval of four new RNAi drugs, we sought to investigate the potential of mitochondrion-targeting RNA-based therapeutic agents for treatment of mitochondrial diseases. Here we describe the causes and existing therapies for mitochondrial diseases. We then detail potential RNA-based therapeutic strategies for treatment of mitochondrial diseases, including use of antisense oligonucleotides (ASOs) and RNAi drugs, allotopic therapies, and RNA-based antigenomic therapies that aim to decrease the level of deleterious heteroplasmy in affected tissues. Finally, we review different mechanisms by which RNA-based therapeutic agents can be delivered to the mitochondrial matrix, including mitochondrion-targeted nanocarriers and endogenous mitochondrial RNA import pathways.
RESUMEN
Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus, responsible for an atypical pneumonia that can progress to acute lung injury. MicroRNAs are small non-coding RNAs that control specific genes and pathways. This study evaluated the association between circulating miRNAs and lung injury associated with COVID-19. Methods: We evaluated lung injury by computed tomography at hospital admission and discharge and the serum expression of 754 miRNAs using the TaqMan OpenArray after hospital discharge in 27 patients with COVID-19. In addition, miR-150-3p was validated by qRT-PCR on serum samples collected at admission and after hospital discharge. Results: OpenArray analysis revealed that seven miRNAs were differentially expressed between groups of patients without radiological lung improvement compared to those with lung improvement at hospital discharge, with three miRNAs being upregulated (miR-548c-3p, miR-212-3p, and miR-548a-3p) and four downregulated (miR-191-5p, miR-151a-3p, miR-92a-3p, and miR-150-3p). Bioinformatics analysis revealed that five of these miRNAs had binding sites in the SARS-CoV-2 genome. Validation of miR-150-3p by qRT-PCR confirmed the OpenArray results. Conclusions: The present study shows the potential association between the serum expression of seven miRNAs and lung injury in patients with COVID-19. Furthermore, increased expression of miR-150 was associated with pulmonary improvement at hospital discharge.
Asunto(s)
COVID-19 , Lesión Pulmonar , MicroARNs , COVID-19/genética , Biología Computacional/métodos , Humanos , MicroARNs/metabolismo , SARS-CoV-2RESUMEN
Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.
Asunto(s)
Fibroblastos , Fosfatidilinositol 3-Quinasas , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fibroblastos/metabolismo , Lisosomas/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/genéticaRESUMEN
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.
Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Línea Celular Tumoral , Autorrenovación de las Células/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , MicroARNs/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Lysosomes are terminal, degradative organelles of the endosomal pathway that undergo repeated fusion-fission cycles with themselves, endosomes, phagosomes, and autophagosomes. Lysosome number and size depends on balanced fusion and fission rates. Thus, conditions that favour fusion over fission can reduce lysosome numbers while enlarging their size. Conversely, favouring fission over fusion may cause lysosome fragmentation and increase their numbers. PIKfyve is a phosphoinositide kinase that generates phosphatidylinositol-3,5-bisphosphate to modulate lysosomal functions. PIKfyve inhibition causes an increase in lysosome size and reduction in lysosome number, consistent with lysosome coalescence. This is thought to proceed through reduced lysosome reformation and/or fission after fusion with endosomes or other lysosomes. Previously, we observed that photo-damage during live-cell imaging prevented lysosome coalescence during PIKfyve inhibition. Thus, we postulated that lysosome fusion and/or fission dynamics are affected by reactive oxygen species (ROS). Here, we show that ROS generated by various independent mechanisms all impaired lysosome coalescence during PIKfyve inhibition and promoted lysosome fragmentation during PIKfyve re-activation. However, depending on the ROS species or mode of production, lysosome dynamics were affected distinctly. H2O2 impaired lysosome motility and reduced lysosome fusion with phagosomes, suggesting that H2O2 reduces lysosome fusogenecity. In comparison, inhibitors of oxidative phosphorylation, thiol groups, glutathione, or thioredoxin, did not impair lysosome motility but instead promoted clearance of actin puncta on lysosomes formed during PIKfyve inhibition. Additionally, actin depolymerizing agents prevented lysosome coalescence during PIKfyve inhibition. Thus, we discovered that ROS can generally prevent lysosome coalescence during PIKfyve inhibition using distinct mechanisms depending on the type of ROS.
Asunto(s)
Especies Reactivas de Oxígeno , Autofagosomas/metabolismo , Peróxido de Hidrógeno , Lisosomas , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismoRESUMEN
Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 (GATA1) mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT proto-oncogene (KIT) cells mediated the propagation of preleukemia and leukemia, and KIT inhibition targeted preleukemic stem cells.
Asunto(s)
Proteínas de Ciclo Celular/genética , Síndrome de Down/genética , Factor de Transcripción GATA1/genética , Células Madre Hematopoyéticas/fisiología , Leucemia Mieloide/genética , Preleucemia/genética , Animales , Antígenos CD34/análisis , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Proliferación Celular , Transformación Celular Neoplásica , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 21/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Síndrome de Down/complicaciones , Femenino , Factor de Transcripción GATA1/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Hígado/embriología , Masculino , Megacariocitos/fisiología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Preleucemia/metabolismo , Preleucemia/patología , Inhibidores de Proteínas Quinasas/farmacología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-kit/análisis , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , CohesinasRESUMEN
A pseudogene is defined as a genomic DNA sequence that looks like a mutated or truncated version of a known functional gene. Nearly four decades since their first discovery it has been estimated that between ~12,000 and ~20,000 pseudogenes exist in the human genome. Early efforts to characterize functions for pseudogenes were unsuccessful, thus they were considered functionless relics of evolutionary selection, junk DNA or genetic fossils. Remarkably, an increasing number of pseudogenes have been reported to be expressed as RNA transcripts above and beyond levels considered accidental or spurious transcription. There is emerging evidence that some expressed pseudogene transcripts have biological functions and should be defined as a subclass of functional long noncoding RNAs (lncRNA). In this introductory chapter, I briefly summarize the history and the current knowledge of pseudogenes, and highlight the emerging functions of some pseudogenes in human biology and disease. This second iteration of Pseudogenes in Methods in Molecular Biology highlights new methodological approaches to investigate this intriguing family of lncRNAs and the extent of their biological function.
Asunto(s)
Seudogenes , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Epigénesis Genética , Evolución Molecular , Duplicación de Gen , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mutagénesis Insercional , Mutación , Seudogenes/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Transcripción GenéticaRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for the coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to identify microRNA with predicted binding sites in the SARS-CoV-2 genome, compare these to their microRNA expression profiles in lung epithelial tissue and make inference towards possible roles for microRNA in mitigating coronavirus infection. We hypothesize that high expression of specific coronavirus-targeting microRNA in lung epithelia may protect against infection and viral propagation, conversely, low expression may confer susceptibility to infection. We have identified 128 human microRNA with potential to target the SARS-CoV-2 genome, most of which have very low expression in lung epithelia. Six of these 128 microRNA are differentially expressed upon in vitro infection of SARS-CoV-2. Additionally, 28 microRNA also target the SARS-CoV genome while 23 microRNA target the MERS-CoV genome. We also found that a number of microRNA are commonly identified in two other studies. Further research into identifying bona fide coronavirus targeting microRNA will be useful in understanding the importance of microRNA as a cellular defence mechanism against pathogenic coronavirus infections.
Asunto(s)
Células Epiteliales Alveolares/virología , Betacoronavirus/genética , MicroARNs/genética , Células Epiteliales Alveolares/inmunología , Betacoronavirus/patogenicidad , Línea Celular Tumoral , Genoma Viral , Humanos , MicroARNs/metabolismo , Motivos de Nucleótidos , SARS-CoV-2 , Análisis de Secuencia de ARNRESUMEN
Here we apply state-of-the-art CRISPR technologies to study the impact that PTENP1 pseudogene transcript has on the expression levels of its parental gene PTEN, and hence on the output of AKT signaling in cancer. Our data expand the repertoire of approaches that can be used to dissect competing endogenous RNA (ceRNA)-based interactions, while providing further experimental evidence in support of the very first one that we discovered.
Asunto(s)
Sistemas CRISPR-Cas , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Fosfohidrolasa PTEN/genética , Seudogenes/genética , ARN Neoplásico/genética , Adenocarcinoma/patología , Unión Competitiva , División Celular , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Neoplasias/biosíntesis , Fosfohidrolasa PTEN/biosíntesis , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Homología de Secuencia de Ácido NucleicoRESUMEN
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
RESUMEN
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a key tumor suppressor in the development and progression of different tumor types. Emerging data indicate that small reductions in PTEN protein levels can promote cancer. PTEN protein levels are tightly controlled by a plethora of mechanisms beginning with epigenetic and transcriptional regulation and ending with control of protein synthesis and stability. PTEN messenger RNA (mRNA) is also subject to exquisite regulation by microRNAs, coding and long noncoding RNAs, and RNA-binding proteins. Additionally, PTEN mRNA is markedly influenced by alternative splicing and variable polyadenylation. Herein we provide a synoptic description of the current understanding of the complex regulatory landscape of PTEN mRNA regulation including several specific processes that modulate its stability and expression, in the context of PTEN loss-associated cancers.