Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Intervalo de año de publicación
1.
Biomed Pharmacother ; 175: 116742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754265

RESUMEN

Chagasic chronic cardiomyopathy (CCC) is the primary clinical manifestation of Chagas disease (CD), caused by Trypanosoma cruzi. Current therapeutic options for CD are limited to benznidazole (Bz) and nifurtimox. Amiodarone (AMD) has emerged as most effective drug for treating the arrhythmic form of CCC. To address the effects of Bz and AMD we used a preclinical model of CCC. Female C57BL/6 mice were infected with T. cruzi and subjected to oral treatment for 30 consecutive days, either as monotherapy or in combination. AMD in monotherapy decreased the prolonged QTc interval, the incidence of atrioventricular conduction disorders and cardiac hypertrophy. However, AMD monotherapy did not impact parasitemia, parasite load, TNF concentration and production of reactive oxygen species (ROS) in cardiac tissue. Alike Bz therapy, the combination of Bz and AMD (Bz/AMD), improved cardiac electric abnormalities detected T. cruzi-infected mice such as decrease in heart rates, enlargement of PR and QTc intervals and increased incidence of atrioventricular block and sinus arrhythmia. Further, Bz/AMD therapy ameliorated the ventricular function and reduced parasite burden in the cardiac tissue and parasitemia to a degree comparable to Bz monotherapy. Importantly, Bz/AMD treatment efficiently reduced TNF concentration in the cardiac tissue and plasma and had beneficial effects on immunological abnormalities. Moreover, in the cardiac tissue Bz/AMD therapy reduced fibronectin and collagen deposition, mitochondrial damage and production of ROS, and improved sarcomeric and gap junction integrity. Our study underlines the potential of the Bz/AMD therapy, as we have shown that combination increased efficacy in the treatment of CCC.


Asunto(s)
Amiodarona , Cardiomiopatía Chagásica , Modelos Animales de Enfermedad , Quimioterapia Combinada , Ratones Endogámicos C57BL , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Nitroimidazoles/farmacología , Nitroimidazoles/administración & dosificación , Nitroimidazoles/uso terapéutico , Femenino , Trypanosoma cruzi/efectos de los fármacos , Amiodarona/farmacología , Amiodarona/administración & dosificación , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/parasitología , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Crónica , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Factor de Necrosis Tumoral alfa/metabolismo , Carga de Parásitos
2.
Pharmaceuticals (Basel) ; 16(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37375730

RESUMEN

BACKGROUND: Statins present a plethora of pleiotropic effects including anti-inflammatory and antimicrobial responses. A,α-difluorophenylacetamides, analogs of diclofenac, are potent pre-clinical anti-inflammatory non-steroidal drugs. Molecular hybridization based on the combination of pharmacophoric moieties has emerged as a strategy for the development of new candidates aiming to obtain multitarget ligands. METHODS: Considering the anti-inflammatory activity of phenylacetamides and the potential microbicidal action of statins against obligate intracellular parasites, the objective of this work was to synthesize eight new hybrid compounds of α,α-difluorophenylacetamides with the moiety of statins and assess their phenotypic activity against in vitro models of Plasmodium falciparum and Trypanosoma cruzi infection besides exploring their genotoxicity safety profile. RESULTS: None of the sodium salt compounds presented antiparasitic activity and two acetated compounds displayed mild anti-P. falciparum effect. Against T. cruzi, the acetate halogenated hybrids showed moderate effect against both parasite forms relevant for human infection. Despite the considerable trypanosomicidal activity, the brominated compound revealed a genotoxic profile impairing future in vivo testing. CONCLUSIONS: However, the chlorinated derivative was the most promising compound with chemical and biological profitable characteristics, without presenting genotoxicity in vitro, being eligible for further in vivo experiments.

3.
Front Cell Infect Microbiol ; 12: 975931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093188

RESUMEN

Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, is an important public health problem mainly in Latin America, leading to approximately 12,000 annual deaths. Current etiological treatment for CD is limited to two nitro compounds, benznidazole (Bz) and nifurtimox (Nif), both presenting relevant limitations. Different approaches have been employed to establish more effective and safer schemes to treat T. cruzi infection, mostly based on drug repurposing and combination therapies. Amiodarone (AMD), an antiarrhythmic medicament of choice for patients with the chronic cardiac form of CD, is also recognized as a trypanocidal agent. Therefore, our aim is to investigate the combined treatment Bz + AMD on trypomastigote viability, control of T. cruzi intracellular form proliferation, and recovery of the infection-induced cytoskeleton alterations in cardiac cells. The combination of Bz + AMD did not improve the direct trypanocidal effect of AMD on the infective blood trypomastigote and replicative intracellular forms of the parasite. Otherwise, the treatment of T. cruzi-infected cardiac cells with Bz plus AMD attenuated the infection-triggered cytoskeleton damage of host cells and the cytotoxic effects of AMD. Thus, the combined treatment Bz + AMD may favor parasite control and hamper tissue damage.


Asunto(s)
Amiodarona , Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Amiodarona/farmacología , Amiodarona/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Citoesqueleto , Humanos , Nitroimidazoles , Tripanocidas/farmacología
4.
PLoS One ; 16(3): e0246811, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661933

RESUMEN

The treatment of Chagas disease (CD), a neglected parasitic condition caused by Trypanosoma cruzi, is still based on only two drugs, nifurtimox (Nif) and benznidazole (Bz), both of which have limited efficacy in the late chronic phase and induce severe side effects. This scenario justifies the continuous search for alternative drugs, and in this context, the natural naphthoquinone ß-lapachone (ß-Lap) and its derivatives have demonstrated important trypanocidal activities. Unfortunately, the decrease in trypanocidal activity in the blood, high toxicity to mammalian cells and low water solubility of ß-Lap limit its systemic administration and, consequently, clinical applications. For this reason, carriers as drug delivery systems can strategically maximize the therapeutic effects of this drug, overcoming the above mentioned restrictions. Accordingly, the aim of this study is to investigate the in vitro anti-T. cruzi effects of ß-Lap encapsulated in2-hydroxypropyl-ß-cyclodextrin (2HP-ß-CD) and its potential toxicity to mammalian cells.


Asunto(s)
Portadores de Fármacos/química , Naftoquinonas/química , Naftoquinonas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Línea Celular , Solubilidad
5.
Med Chem ; 17(6): 630-637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31965946

RESUMEN

BACKGROUND: Near to 5-7 million people are infected with T. cruzi in the world, and about 10,000 people per year die of problems associated with this disease. METHODS: Herein, the synthesis, antitrypanosomal and antimycobacterial activities of seventeen coumarinic N-acylhydrazonic derivatives have been reported. RESULTS: These compounds were synthesized using methodology with reactions global yields ranging from 46%-70%. T. cruzi in vitro effects were evaluated against trypomastigote and amastigote, forming M. tuberculosis activity towards H37Rv sensitive strain and resistant strains. DISCUSSION: Against T. cruzi, the more active compounds revealed only moderate activity IC50/96h~20 µM for both trypomastigotes and amastigotes intracellular forms. (E)-2-oxo-N'- (3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide showed meaningful activity in INH resistant/RIP resistant strain. CONCLUSION: These compound acting as multitarget could be good leads for the development of new trypanocidal and bactericidal agents.


Asunto(s)
Cumarinas/química , Hidrazonas/síntesis química , Hidrazonas/farmacología , Nitrógeno/química , Trypanosoma/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Técnicas de Química Sintética , Farmacorresistencia Bacteriana/efectos de los fármacos , Hidrazonas/química , Mycobacterium tuberculosis/efectos de los fármacos
6.
Bioorg Med Chem ; 28(15): 115565, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631558

RESUMEN

Rhodium-catalyzed [2 + 2 + 2] cycloadditions, sulfonyl phthalide annulations and nitroalkene reactions have been employed for the synthesis of 56 quinone-based compounds. These were evaluated against Trypanosoma cruzi, the parasite that causes Chagas disease. The reactions described here are part of a program that aims to utilize modern, versatile and efficient synthetic methods for the one or two step preparation of trypanocidal compounds. We have identified 9 compounds with potent activity against the parasite; 3 of these were 30-fold more potent than benznidazole (Bz), a drug used for the treatment of Chagas disease. This article provides a comprehensive outline of reactions involving over 120 compounds aimed at the discovery of new quinone-based frameworks with activity against T. cruzi.


Asunto(s)
Naftoquinonas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Alquenos/química , Catálisis , Reacción de Cicloadición , Estructura Molecular , Naftoquinonas/síntesis química , Nitrocompuestos/química , Pruebas de Sensibilidad Parasitaria , Rodio/química , Relación Estructura-Actividad , Sulfonas/química , Tripanocidas/síntesis química
7.
Biomed Pharmacother ; 127: 110162, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32407986

RESUMEN

Herein, we present the design, synthesis and trypanocidal evaluation of sixteen new 1,3,4-thiadiazole derivatives from N-aminobenzyl or N-arylhydrazone series. All derivatives were assayed against the trypomastigote form of Trypanosoma cruzi, showing IC50 values ranging from 3 to 226 µM, and a better trypanocidal profile was demonstrated for the 1,3,4-thiadiazole-N-arylhydrazones (3a-g). In this series, the 2-pyridinyl fragment bound to the imine subunit of the hydrazine moiety presented pharmacophoric behavior for trypanocidal activity. Compounds 2a, 11a and 3e presented remarkable activity and excellent selectivity indexes. Compound 2a was also active against the intracellular amastigote form of T. cruzi. Moreover, its corresponding hydrochloride, compound 11a, showed the most promising profile, producing phenotypic changes similar to those caused by posaconazole, a well-known inhibitor of sterol biosynthesis. Thus, 1,3,4-thiadiazole derivative 11a could be considered a good prototype for the development of new drug candidates for Chagas disease therapy.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Tiadiazoles/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/parasitología , Concentración 50 Inhibidora , Ratones , Relación Estructura-Actividad , Tiadiazoles/síntesis química , Tiadiazoles/química , Tripanocidas/síntesis química , Tripanocidas/química
8.
Viruses ; 13(1)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383619

RESUMEN

Despite the severe morbidity caused by Zika fever, its specific treatment is still a challenge for public health. Several research groups have investigated the drug repurposing of chloroquine. However, the highly toxic side effect induced by chloroquine paves the way for the improvement of this drug for use in Zika fever clinics. Our aim is to evaluate the anti-Zika virus (ZIKV) effect of hybrid compounds derived from chloroquine and sulfadoxine antimalarial drugs. The antiviral activity of hybrid compounds (C-Sd1 to C-Sd7) was assessed in an in-vitro model of human cervical and Vero cell lines infected with a Brazilian (BR) ZIKV strain. First, we evaluated the cytotoxic effect on cultures treated with up to 200 µM of C-Sds and observed CC50 values that ranged from 112.0 ± 1.8 to >200 µM in cervical cells and 43.2 ± 0.4 to 143.0 ± 1.3 µM in Vero cells. Then, the cultures were ZIKV-infected and treated with up to 25 µM of C-Sds for 48 h. The treatment of cervical cells with C-Sds at 12 µM induced a reduction of 79.8% ± 4.2% to 90.7% ± 1.5% of ZIKV-envelope glycoprotein expression in infected cells as compared to 36.8% ± 2.9% of infection in vehicle control. The viral load was also investigated and revealed a reduction of 2- to 3-logs of ZIKV genome copies/mL in culture supernatants compared to 6.7 ± 0.7 × 108 copies/mL in vehicle control. The dose-response curve by plaque-forming reduction (PFR) in cervical cells revealed a potent dose-dependent activity of C-Sds in inhibiting ZIKV replication, with PFR above 50% and 90% at 6 and 12 µM, respectively, while 25 µM inhibited 100% of viral progeny. The treatment of Vero cells at 12 µM led to 100% PFR, confirming the C-Sds activity in another cell type. Regarding effective concentration in cervical cells, the EC50 values ranged from 3.2 ± 0.1 to 5.0 ± 0.2 µM, and the EC90 values ranged from 7.2 ± 0.1 to 11.6 ± 0.1 µM, with selectivity index above 40 for most C-Sds, showing a good therapeutic window. Here, our aim is to investigate the anti-ZIKV activity of new hybrid compounds that show highly potent efficacy as inhibitors of ZIKV in-vitro infection. However, further studies will be needed to investigate whether these new chemical structures can lead to the improvement of chloroquine antiviral activity.


Asunto(s)
Antivirales/farmacología , Cloroquina/farmacología , Sulfadoxina/farmacología , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Virus Zika/fisiología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Cloroquina/análogos & derivados , Cloroquina/química , Humanos , Estructura Molecular , Sulfadoxina/análogos & derivados , Sulfadoxina/química , Células Vero , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
9.
Med Chem ; 16(4): 487-494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31309899

RESUMEN

BACKGROUND: Approximately, 5-7 million people are infected with T. cruzi in the world, and approximately 10,000 people per year die of complications linked to this disease. METHODS: This work describes the construction of a new family of hidrazonoyl substituted derivatives, structurally designed exploring the molecular hybridization between megazol and nitrofurazone. RESULTS AND DISCUSSION: The compounds were evaluated for their in vitro activity against bloodstream trypomastigotes of Trypanosoma cruzi, etiological agent of Chagas disease, and for their potential toxicity to mammalian cells. CONCLUSION: Among these hydrazonoyl derivatives, we identified the derivative (4) that showed trypanocidal activity (IC50/24 h = 15.0 µM) similar to Bz, the standard drug, and low toxicity to mammalian cells, reaching an SI value of 18.7.


Asunto(s)
Hidrazonas/síntesis química , Hidrazonas/farmacología , Tripanocidas/síntesis química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Línea Celular , Técnicas de Química Sintética , Hidrazonas/química , Relación Estructura-Actividad , Tripanocidas/química
10.
Med Chem ; 16(6): 774-783, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31244442

RESUMEN

BACKGROUND: Although several research efforts have been made worldwide to discover novel drug candidates for the treatment of Chagas disease, the nitroimidazole drug benznidazol remains the only therapeutic alternative in the control of this disease. However, this drug presents reduced efficacy in the chronic form of the disease and limited safety after long periods of administration, making it necessary to search for new, more potent and safe prototypes. OBJECTIVE: We described herein the synthesis and the trypanocidalaction of new functionalized carbohydrazonamides (2-10) against trypomastigote forms of Trypanosoma cruzi. METHODS: These compounds were designed through the application of molecular hybridization concept between two potent anti-T. cruzi prototypes, the nitroimidazole derivative megazol (1) and the cinnamyl N-acylhydrazone derivative (14) which have been shown to be twice as potent in vitro as benznidazole. RESULTS: The most active compounds were the (Z)-N'-((E)-3-(4-nitrophenyl)-acryloyl)-1-methyl-5- nitro-1H-imidazol-2-carbohydrazonamide (6) (IC50=9.50 µM) and the (Z)-N'-((E)-3-(4- hydroxyphe-nyl)-acryloyl)-1-methyl-5-nitro-1H-imidazol-2-carbohydrazonamide (8) (IC50=12.85 µM), which were almost equipotent to benznidazole (IC50=10.26 µM) used as standard drug. The removal of the amine group attached to the imine subunit in the corresponding N-acylhydrazone derivatives (11-13) resulted in less potent or inactive compounds. The para-hydroxyphenyl derivative (8) presented also a good selectivity index (SI = 32.94) when tested against mammalian cells from Swiss mice. CONCLUSION: The promising trypanocidal profile of new carbohydrazonamide derivatives (6) and (8) was characterized. These compounds have proved to be a good starting point for the design of more effective trypanocidal drug candidates.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Tripanocidas/síntesis química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Células Cultivadas , Diseño de Fármacos , Macrófagos Peritoneales/efectos de los fármacos , Ratones , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Tripanocidas/química
11.
Eur J Med Chem ; 186: 111887, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31787363

RESUMEN

The current treatment of Chagas disease is based on the use of two drugs, nifurtimox (Nfx) and benznidazole (Bnz), both of which present limited efficacy in the chronic stage of the disease and toxic side effects. Thus, the discovery of novel compounds is urgently required. Herein, we report the successful synthesis of 4-nitroimidazole analogs of Bnz via nucleophilic aromatic substitution or cycloaddition reactions. The analogs were biologically evaluated, and compound 4 (4-cyclopropyl-1-(1-methyl-4-nitro-1H-imidazole-5-yl)-1H-1,2,3-triazole) was identified as the most potent against both the trypomastigote (IC50 = 5.4 µM) and amastigote (IC50 = 12.0 µM) forms of T. cruzi, showing activity in the same range as Bnz (IC50 = 8.8 and 8.7 µM, respectively). The cytotoxic and genotoxic activities of compounds 5, 4 and 11 were assessed. These three compounds were cytotoxic and genotoxic to RAW and HepG2 cells and mutagenic to Salmonella enterica strains. However, 4 exhibited toxic effects only at concentrations higher than those needed for trypanocidal activity. Molecular docking of 4 showed the importance of the size and π-π interactions between the nitroimidazole and the cofactor (flavin mononucleotide) of T.cruzi-nitroreductase (TcNTR). Moreover, the residues His503 and Tyr545 are relevant for binding to TcNTR. Our design strategy was capable of generating novel and active Bnz analogs.


Asunto(s)
Antiprotozoarios/farmacología , Nitroimidazoles/farmacología , Salmonella enterica/efectos de los fármacos , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Nitroimidazoles/síntesis química , Nitroimidazoles/química , Nitrorreductasas/antagonistas & inhibidores , Nitrorreductasas/metabolismo , Células RAW 264.7 , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma cruzi/enzimología
12.
Mem Inst Oswaldo Cruz ; 114: e190017, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31271593

RESUMEN

BACKGROUND: Only benznidazole (Bnz) (1) and nifurtimox (Nfx) (2) are licensed for the treatment of Chagas disease although their safety and efficacy profile are far from ideal. Farmanguinhos from Fiocruz has developed seven nitroimidazole compounds (4-10) analogs of megazol (3). OBJECTIVES: To evaluate whether the genotoxic effect of 3 was abolished in the seven nitroimidazoles (4-10) analogs using the in vitro alkaline comet assay (CA) and the in vitro cytokinesis-block micronucleus assay (CBMN) in whole human blood cells (WHBC) and correlate this effect with their trypanocidal activity using bloodstream trypomastigote forms of Trypanosoma cruzi. METHODS: The toxicity of 3-10 to WHBC in the in vitro CA was determined using the fluorescein diacetate/ethidium bromide assay. DNA damage in the in vitro CA was evaluated according to tail size in four classes (0-3) and methyl methane-sulfonate (MMS) was used as a positive control. The cytotoxicity of 3-10 to WHBC in the CBMN was measured using the cytokinesis-block proliferation index and the replication index. The number of the micronucleate cells in 2,000 binucleate cells by experimental group was determined. Mitomycin C and N-deacetyl-N-methylcolchicine were used as positive controls. FINDINGS: Compound 3 showed a significant DNA strand break effect through the in vitro CA and highly significant clastogenic and/or aneugenic effect in the CBMN. Compounds 5, 6, 8, 9 and 10 showed negative results in the CBMN and positive results in the in vitro CA, while the inverse effect was observed for 4 and 7. MAIN CONCLUSIONS: Compound 10 was the most promising to proceed with the development as a drug candidate in the treatment of Chagas disease showing absence of chromosomal cytogenetic damage and high activity against T. cruzi, about two times higher than 3 and the clinical drug 1.


Asunto(s)
Nitroimidazoles/toxicidad , Tripanocidas/toxicidad , Células Sanguíneas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa/métodos , Daño del ADN , Humanos , Pruebas de Micronúcleos/métodos , Nifurtimox/química , Nifurtimox/toxicidad , Nitroimidazoles/química , Valores de Referencia , Reproducibilidad de los Resultados , Tiadiazoles/química , Tiadiazoles/toxicidad , Factores de Tiempo , Tripanocidas/química , Trypanosoma cruzi/efectos de los fármacos
13.
Mem. Inst. Oswaldo Cruz ; 114: e190017, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1012676

RESUMEN

BACKGROUND Only benznidazole (Bnz) (1) and nifurtimox (Nfx) (2) are licensed for the treatment of Chagas disease although their safety and efficacy profile are far from ideal. Farmanguinhos from Fiocruz has developed seven nitroimidazole compounds (4-10) analogs of megazol (3). OBJECTIVES To evaluate whether the genotoxic effect of 3 was abolished in the seven nitroimidazoles (4-10) analogs using the in vitro alkaline comet assay (CA) and the in vitro cytokinesis-block micronucleus assay (CBMN) in whole human blood cells (WHBC) and correlate this effect with their trypanocidal activity using bloodstream trypomastigote forms of Trypanosoma cruzi. METHODS The toxicity of 3-10 to WHBC in the in vitro CA was determined using the fluorescein diacetate/ethidium bromide assay. DNA damage in the in vitro CA was evaluated according to tail size in four classes (0-3) and methyl methane-sulfonate (MMS) was used as a positive control. The cytotoxicity of 3-10 to WHBC in the CBMN was measured using the cytokinesis-block proliferation index and the replication index. The number of the micronucleate cells in 2,000 binucleate cells by experimental group was determined. Mitomycin C and N-deacetyl-N-methylcolchicine were used as positive controls. FINDINGS Compound 3 showed a significant DNA strand break effect through the in vitro CA and highly significant clastogenic and/or aneugenic effect in the CBMN. Compounds 5, 6, 8, 9 and 10 showed negative results in the CBMN and positive results in the in vitro CA, while the inverse effect was observed for 4 and 7. MAIN CONCLUSIONS Compound 10 was the most promising to proceed with the development as a drug candidate in the treatment of Chagas disease showing absence of chromosomal cytogenetic damage and high activity against T. cruzi, about two times higher than 3 and the clinical drug 1.


Asunto(s)
Tripanocidas/uso terapéutico , Tripanocidas/farmacología , Nitroimidazoles/uso terapéutico , Técnicas In Vitro/métodos , Pruebas de Mutagenicidad/métodos
14.
Eur J Med Chem ; 136: 406-419, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521262

RESUMEN

Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC50/24 h values of less than 2 µM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy.


Asunto(s)
Técnicas Electroquímicas , Quinonas/farmacología , Rodio/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Catálisis , Relación Dosis-Respuesta a Droga , Macrófagos/efectos de los fármacos , Ratones , Estructura Molecular , Quinonas/síntesis química , Quinonas/química , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
15.
Curr Top Med Chem ; 16(20): 2266-89, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27072716

RESUMEN

In this review, we intend to provide a general view of the evolution of experimental studies in the area of chemotherapy for Chagas disease. We can follow the process of drug development through three phases. The first phase began almost at the same time as the discovery made by Carlos Chagas and proceeds to 1970, during which time an extensive list of compounds was subjected to preclinical and clinical trials. The second phase began with the introduction of nifurtimox and benznidazole into the clinical setting, followed with the search for alternative drugs. In this phase, a dichotomy existed between rational and empirical approaches in preclinical studies. The third phase began with the unravelling of the T. cruzi genome. The development of transgenic parasites has allowed the development of solid HTS protocols, and the establishment of bioluminescent T. cruzi has allowed in vivo drug evaluations using a reduced number of animals. Among the wide variety of compounds subjected to preclinical studies, we have discovered azolic and non-azolic inhibitors of sterol C14α-demethylase (CYP51) and nitro compounds. Two compounds evaluated during the second phase, namely, MK-436 and allopurinol, could be revisited. Clinical studies of posaconazole and E1224 yielded disappointing results, and it is critical to understand the reason for their failure as a monotherapy. Currently, the combination and repositioning of drugs with different mechanisms of action are complementary approaches. The use of drug combinations, particularly those of nitro compounds with CYP51 inhibitors, is considered a real alternative for the treatment of Chagas disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Tripanocidas/uso terapéutico , Humanos
16.
Bioorg Med Chem ; 23(15): 4763-4768, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26118339

RESUMEN

We report herein a straightforward and efficient one-step reaction to prepare new nor-ß-lapachone derivatives tethered with phenylthio groups at position 3 of the furan ring. We have screened the compounds on bloodstream trypomastigotes of Trypanosoma cruzi, the causative agent of Chagas disease, aimed at finding a new prototype with high trypanocidal activity. The new compounds possess a broad range of activity (IC50/24h from 9.2 to 182.7 µM), higher than the original quinone (391.5 µM) and four of them higher than standard drug benznidazole (103.6 µM). The most active was compound 13b (9.2 µM), being 11 times active than benznidazole and the less toxic derivative to heart muscle cells.


Asunto(s)
Benzofuranos/química , Naftoquinonas/química , Tripanocidas/síntesis química , Animales , Benzofuranos/uso terapéutico , Benzofuranos/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Enfermedad de Chagas/tratamiento farmacológico , Embrión de Mamíferos/citología , Corazón/efectos de los fármacos , Humanos , Ratones , Miocardio/citología , Miocardio/metabolismo , Naftoquinonas/uso terapéutico , Naftoquinonas/toxicidad , Relación Estructura-Actividad , Tripanocidas/uso terapéutico , Tripanocidas/toxicidad , Trypanosoma cruzi/efectos de los fármacos
17.
Mem. Inst. Oswaldo Cruz ; 110(4): 492-499, 09/06/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-748858

RESUMEN

Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO 2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.


Asunto(s)
Animales , Ratones , Daño del ADN/efectos de los fármacos , Nitroimidazoles/química , Nitroimidazoles/toxicidad , Salmonella/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Pruebas de Mutagenicidad , Relación Estructura-Actividad
18.
Mem Inst Oswaldo Cruz ; 110(4): 492-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26018452

RESUMEN

Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO 2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.


Asunto(s)
Daño del ADN/efectos de los fármacos , Nitroimidazoles/química , Nitroimidazoles/toxicidad , Salmonella/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Ratones , Pruebas de Mutagenicidad , Relación Estructura-Actividad
19.
Mem. Inst. Oswaldo Cruz ; 109(3): 315-323, 06/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-711722

RESUMEN

Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.


Asunto(s)
Animales , Humanos , Masculino , Ratones , Nitrorreductasas/efectos de los fármacos , Tiadiazoles , Triazoles , Tripanocidas , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Nitrorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tiadiazoles/química , Tiadiazoles/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/toxicidad , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Triazoles/toxicidad , Tripanocidas/química , Tripanocidas/farmacología , Tripanocidas/toxicidad , Trypanosoma cruzi/efectos de los fármacos
20.
Mem Inst Oswaldo Cruz ; 109(3): 315-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24676659

RESUMEN

Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.


Asunto(s)
Nitrorreductasas/efectos de los fármacos , Tiadiazoles , Triazoles , Tripanocidas , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Animales , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Nitrorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tiadiazoles/química , Tiadiazoles/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/toxicidad , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Triazoles/toxicidad , Tripanocidas/química , Tripanocidas/farmacología , Tripanocidas/toxicidad , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...