Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 39(3): 217-220, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38278702

RESUMEN

Current reductionist approaches to environmental governance cannot resolve social-ecological crises. Siloed institutions fail to address linked social and ecological processes, thereby neglecting issues of equity, justice, and cumulative effects. Global insights can be gained from Indigenous-led initiatives that support the resilience of relationships within and among places.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Política Ambiental , Medio Social
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220196, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37246378

RESUMEN

With climate, biodiversity and inequity crises squarely upon us, never has there been a more pressing time to rethink how we conceptualize, understand and manage our relationship with Earth's biodiversity. Here, we describe governance principles of 17 Indigenous Nations from the Northwest Coast of North America used to understand and steward relationships among all components of nature, including humans. We then chart the colonial origins of biodiversity science and use the complex case of sea otter recovery to illuminate how ancestral governance principles can be mobilized to characterize, manage and restore biodiversity in more inclusive, integrative and equitable ways. To enhance environmental sustainability, resilience and social justice amid today's crises, we need to broaden who benefits from and participates in the sciences of biodiversity by expanding the values and methodologies that shape such initiatives. In practice, biodiversity conservation and natural resource management need to shift from centralized, siloed approaches to those that can accommodate plurality in values, objectives, governance systems, legal traditions and ways of knowing. In doing so, developing solutions to our planetary crises becomes a shared responsibility. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Asunto(s)
Biodiversidad , Justicia Social , Humanos , América del Norte , Clima , Conservación de los Recursos Naturales , Ecosistema
3.
Environ Biol Fishes ; 105(10): 1381-1397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313613

RESUMEN

Climate change is altering the distribution and composition of marine fish populations globally, which presents substantial risks to the social and economic well-being of humanity. While deriving long-term climatic baselines is an essential step for detecting and attributing the magnitude of climate change and its impacts, these baselines tend to be limited to historical datasets and palaeoecological sediment records. Here, we develop a method for estimating the 'ancient Mean Temperature of the Catch' (aMTC) using Indigenous fisheries catch records from two archaeological sites in the northeast Pacific. Despite different catch compositions, we observe an increase in aMTC over a 5,000-year period at two contemporaneously occupied archaeological sites in southwestern British Columbia, Canada. We document cooler catches from 5,000 to 3,000 cal yr BP and comparatively warmer catches from 1,800 to 250 cal yr BP. These warmer temperatures are broadly consistent with palaeoceanographic sea surface temperature proxies from British Columbia and Alaska. Because this method requires converting measures of fish bones into estimates of fish size structure, abundance, biomass, and finally aMTC, opportunities exist to account for both variation and uncertainty at every step. Nevertheless, given that preindustrial fisheries data are ubiquitous in coastal archaeological sites, this method has the potential to be applied globally to broaden the temporal and geographic scale of ocean temperature baselines. Supplementary Information: The online version contains supplementary material available at 10.1007/s10641-022-01243-7.

4.
PLoS Biol ; 20(8): e3001702, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35925899

RESUMEN

Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.


Asunto(s)
Kelp , Carbono , Secuestro de Carbono , Cambio Climático , Ecosistema
5.
Am Nat ; 200(1): 168-180, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35737985

RESUMEN

AbstractThis essay explores shifting scientific understandings of fish and the evolution of fisheries science, and it grapples with colonialism as a system of power. We trace the rise of fisheries science to a time when Western nation-states were industrializing fishing fleets and competing for access to distant fishing grounds. A theory of fishing called "maximum sustainable yield" (MSY) that understands fish species in aggregate was espoused. Although alternatives to MSY have been developed, decision-making continues to be informed by statistical models developed within fisheries science. A challenge for structured management systems now rests in attending to different systems of knowledge and addressing local objectives, values, and circumstances. To deepen and illustrate key points, we examine Pacific herring (Clupea pallasii) and the expansion of commercial herring fisheries and state-led management in British Columbia, Canada. A feedback between colonialism and fisheries science is evident: colonialism generated the initial conditions for expansion and has been reinforced through the implementation of approaches and tools from fisheries science that define and quantify conservation in particular ways. Some features may be unique to the herring illustration, but important aspects of the feedback are more broadly generalizable. We propose three interconnected goals: (a) transform the siloed institutions and practices of Western science, (b) reimagine and rebuild pathways between information (including diverse values and perspectives) and decision-making, and (c) devolve governance authority and broaden governance processes such that multiple ways of knowing share equal footing.


Asunto(s)
Colonialismo , Explotaciones Pesqueras , Animales , Colombia Británica , Conservación de los Recursos Naturales , Retroalimentación , Peces , Humanos , Modelos Estadísticos
6.
Proc Biol Sci ; 289(1976): 20220526, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703054

RESUMEN

A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative-depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Biomasa , Conservación de los Recursos Naturales
7.
Ecosystems ; 25(3): 548-566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509679

RESUMEN

The historic extirpation and subsequent recovery of sea otters (Enhydra lutris) have profoundly changed coastal social-ecological systems across the northeastern Pacific. Today, the conservation status of sea otters is informed by estimates of population carrying capacity or growth rates independent of human impacts. However, archaeological and ethnographic evidence suggests that for millennia, complex hunting and management protocols by Indigenous communities limited sea otter abundance near human settlements to reduce the negative impacts of this keystone predator on shared shellfish prey. To assess relative sea otter prevalence in the Holocene, we compared the size structure of ancient California mussels (Mytilus californianus) from six archaeological sites in two regions on the Pacific Northwest Coast, to modern California mussels at locations with and without sea otters. We also quantified modern mussel size distributions from eight locations on the Central Coast of British Columbia, Canada, varying in sea otter occupation time. Comparisons of mussel size spectra revealed that ancient mussel size distributions are consistently more similar to modern size distributions at locations with a prolonged absence of sea otters. This indicates that late Holocene sea otters were maintained well below carrying capacity near human settlements as a result of human intervention. These findings illuminate the conditions under which sea otters and humans persisted over millennia prior to the Pacific maritime fur trade and raise important questions about contemporary conservation objectives for an iconic marine mammal and the social-ecological system in which it is embedded. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-021-00671-3.

8.
Science ; 374(6565): 333-336, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648338

RESUMEN

Most knowledge regarding the role of predators is ecological in nature. Here, we report how disturbance generated by sea otters (Enhydra lutris) digging for infaunal prey in eelgrass (Zostera marina) meadows increases genetic diversity by promoting conditions for sexual reproduction of plants. Eelgrass allelic richness and genotypic diversity were, respectively, 30 and 6% higher in areas where recovering sea otter populations had been established for 20 to 30 years than in areas where they had been present <10 years or absent >100 years. The influence of sea otter occupancy on the aforementioned measures of genetic diversity was stronger than those of depth, temperature, latitude, or meadow size. Our findings reveal an underappreciated evolutionary process by which megafauna may promote genetic diversity and ecological resilience.


Asunto(s)
Cadena Alimentaria , Variación Genética , Nutrias/fisiología , Zosteraceae/genética , Animales
9.
Ecol Appl ; 30(3): e02051, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31820525

RESUMEN

Unanticipated declines among exploited species have commonly occurred despite harvests that appeared sustainable prior to collapse. This is particularly true in the oceans where spatial scales of management are often mismatched with spatially complex metapopulations. We explore causes, consequences, and potential solutions for spatial mismatches in harvested metapopulations in three ways. First, we generate novel theory illustrating when and how harvesting metapopulations increases spatial variability and in turn masks local-scale volatility. Second, we illustrate why spatial variability in harvested metapopulations leads to negative consequences using an empirical example of a Pacific herring metapopulation. Finally, we construct a numerical management strategy evaluation model to identify and highlight potential solutions for mismatches in spatial scale and spatial variability. Our results highlight that spatial complexity can promote stability at large scales, however, ignoring spatial complexity produces cryptic and negative consequences for people and animals that interact with resources at small scales. Harvesting metapopulations magnifies spatial variability, which creates discrepancies between regional and local trends while increasing risk of local population collapses. Such effects asymmetrically impact locally constrained fishers and predators, which are more exposed to risks of localized collapses. Importantly, we show that dynamically optimizing harvest can minimize local risk without sacrificing yield. Thus, multiple nested scales of management may be necessary to avoid cryptic collapses in metapopulations and the ensuing ecological, social, and economic consequences.


Asunto(s)
Ecosistema , Peces , Animales , Humanos , Océanos y Mares , Dinámica Poblacional
10.
Proc Natl Acad Sci U S A ; 116(44): 22106-22114, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611398

RESUMEN

Historical ecology can provide insights into the long-term and complex relationships between humans and culturally important species and ecosystems, thereby extending baselines for modern management. We bring together paleoecological, archaeological, and modern clam records to explore the relationship between humans and butter clams (Saxidomus gigantea) throughout the Holocene in the northern Salish Sea of British Columbia, Canada. We compare butter clam size and growth patterns from different temporal, environmental, and cultural contexts spanning 11,500 y to present. Butter clam size and growth were restricted in early postglacial times but increased over the next few millennia. During the early-Late Holocene, humans took increasing advantage of robust clam populations and after 3.5 ka, began constructing clam gardens (intertidal rock-walled terraces). Environmental and cultural variables, including coarse substrate, stabilized sea surface temperature, and the presence of a clam garden wall, increased clam growth throughout the Holocene. Measurements of clams collected in active clam gardens and deposited in middens suggest that clam gardens as well as other mariculture activities enhanced clam production despite increased harvesting pressure. Since European contact, decline of traditional management practices and increases in industrial activities are associated with reduced clam size and growth similar to those of the early postglacial clams. Deeper-time baselines that more accurately represent clam population variability and allow us to assess magnitudes of change throughout time as well as the complex interactions among humans and clams are useful for modern marine resource management.


Asunto(s)
Acuicultura/métodos , Bivalvos/fisiología , Animales , Bivalvos/crecimiento & desarrollo , Tamaño Corporal , Colombia Británica , Cambio Climático , Ecosistema , Humanos
11.
PLoS One ; 14(10): e0223748, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31613924

RESUMEN

Marine management interventions are increasingly being implemented with the explicit goal of rebuilding ocean ecosystems, but early responses may begin with alterations in ecological interactions preceding detectable changes in population-level characteristics. To establish a baseline from which to monitor the effects of spatial protection on reef fish trophic ecology and track future ecosystem-level changes, we quantified temperate reef fish densities, size, biomass, diets and isotopic signatures at nine sites nested within two fished and one five-year old marine protected area (MPA) on the northwest coast of Canada. We calculated rockfish (Sebastes spp.) community and species-specific niche breadth for fished and protected areas based on δ13C and δ15N values. We found that rockfish community niche width was greater inside the MPA relative to adjacent fished reefs due to an expanded nitrogen range, possibly reflecting early changes in trophic interactions following five years of spatial protection. Our data also demonstrated that the MPA had a positive effect on the δ15N signature of rockfish (i.e., trophic position), but the effect of rockfish length on its own was not well-supported. In addition, we found a positive interaction between rockfish length and δ15N signature, such that δ15N signatures of rockfish caught within the MPA increased more rapidly with body size than those caught in fished areas. Differences in rockfish size structure and biomass among fished and unfished areas were not clearly evident. Species of rockfish and lingcod varied in trophic and size responses, indicating that life-history traits play an important role in predicting MPA effects. These results may suggest early changes in trophic behavior of slow-growing rockfish due to predation risk by faster growing higher trophic level predators such as lingcod inside MPAs established on temperate reefs. Consequently, spatial protection may restore both the trophic and behavioral roles of previously fished consumers earlier and in measurable ways sooner than observable changes in abundance and size.


Asunto(s)
Carbono/análisis , Conservación de los Recursos Naturales/métodos , Nitrógeno/análisis , Perciformes/crecimiento & desarrollo , Animales , Biomasa , Tamaño Corporal , Canadá , Arrecifes de Coral , Ecosistema , Cadena Alimentaria , Perciformes/metabolismo , Densidad de Población
12.
Proc Natl Acad Sci U S A ; 116(30): 15080-15085, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285351

RESUMEN

Understanding how trophic dynamics drive variation in biodiversity is essential for predicting the outcomes of trophic downgrading across the world's ecosystems. However, assessing the biodiversity of morphologically cryptic lineages can be problematic, yet may be crucial to understanding ecological patterns. Shifts in keystone predation that favor increases in herbivore abundance tend to have negative consequences for the biodiversity of primary producers. However, in nearshore ecosystems, coralline algal cover increases when herbivory is intense, suggesting that corallines may uniquely benefit from trophic downgrading. Because many coralline algal species are morphologically cryptic and their diversity has been globally underestimated, increasing the resolution at which we distinguish species could dramatically alter our conclusions about the consequences of trophic dynamics for this group. In this study, we used DNA barcoding to compare the diversity and composition of cryptic coralline algal assemblages at sites that differ in urchin biomass and keystone predation by sea otters. We show that while coralline cover is greater in urchin-dominated sites (or "barrens"), which are subject to intense grazing, coralline assemblages in these urchin barrens are significantly less diverse than in kelp forests and are dominated by only 1 or 2 species. These findings clarify how food web structure relates to coralline community composition and reconcile patterns of total coralline cover with the widely documented pattern that keystone predation promotes biodiversity. Shifts in coralline diversity and distribution associated with transitions from kelp forests to urchin barrens could have ecosystem-level effects that would be missed by ignoring cryptic species' identities.


Asunto(s)
Biodiversidad , Nutrias/fisiología , Filogenia , Rhodophyta/clasificación , Erizos de Mar/fisiología , Animales , Antozoos/fisiología , Arrecifes de Coral , Código de Barras del ADN Taxonómico , ADN de Algas/genética , Ecosistema , Cadena Alimentaria , Kelp/clasificación , Kelp/genética , Océano Pacífico , Conducta Predatoria/fisiología , Rhodophyta/genética
13.
Ecol Evol ; 9(6): 3321-3334, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962895

RESUMEN

Predators exert strong effects on ecological communities, particularly when they re-occupy areas after decades of extirpation. Within species, such effects can vary over time and by sex and cascade across trophic levels. We used a space-for-time substitution to make foraging observations of sea otters (Enhydra lutris) across a gradient of reoccupation time (1-30 years), and nonmetric multidimensional scaling (nMDS) analysis to ask whether (a) sea otter niche space varies as a function of occupation time and (b) whether niche space varies by sex. We found that niche space varied among areas of different occupation times. Dietary niches at short occupation times were dominated by urchins (Mesocentrotus and Strongylocentrotus spp; >60% of diets) in open habitats at 10-40 m depths. At longer occupation times, niches were dominated by small clams (Veneroida; >30% diet), mussels (Mytilus spp; >20% diet), and crab (Decapoda; >10% diet) in shallow (<10 m) kelp habitats. Diet diversity was lowest (H' = 1.46) but energy rich (~37 kcal/min) at the earliest occupied area and highest, but energy poor (H' = 2.63, ~9 kcal/min) at the longest occupied area. A similar transition occurred through time at a recently occupied area. We found that niche space also differed between sexes, with bachelor males consuming large clams (>60%), and urchins (~25%) from deep waters (>40 m), and females and territorial males consuming smaller, varied prey from shallow waters (<10 m). Bachelor male diets were less diverse (H' = 2.21) but more energy rich (~27 kcal/min) than territorial males (H' = 2.54, ~13 kcal/min) and females (H' = 2.74, ~11 kcal/min). Given recovering predators require adequate food and space, and the ecological interactions they elicit, we emphasize the importance of investigating niche space over the duration of recovery and considering sex-based differences in these interactions.

14.
PLoS One ; 14(2): e0211473, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30811408

RESUMEN

BACKGROUND: Traditional food systems are under pressure from various stressors, including climate change which is projected to negatively alter the abundance of marine species harvested by coastal First Nations (FNs) in British Columbia (BC). OBJECTIVE: To model the potential impacts of the climate-related declines in seafood production on the nutritional status of coastal BC FNs. In addition, we projected potential changes in nutrient intakes, under different scenarios of substitution where traditional seafood is replaced with alternative non-traditional foods. METHODS: The study design is a mixed-method approach that combines two datasets: projected scenarios of climate-related change on seafood catch potential for coastal BC FNs and data derived from the cross-sectional First Nations Food, Nutrition, and Environment Study. The consumption of seafood was estimated using a food frequency questionnaire among 356 FNs. The contribution of seafood consumption to protein, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), vitamins (A, B12, D, niacin), and minerals (zinc, selenium and iron) requirements was assessed using Dietary Reference Intakes (DRIs). RESULTS: Traditional seafood consumption provided daily recommendations of EPA+DHA (74-184%) and vitamin B12 (84-152%) and substantial levels of niacin (28-55%), selenium (29-55%), vitamin D (15-30%) and protein (14-30%). Projected climate change was estimated to reduce the intakes of essential nutrients by 21% and 31% under 'strong mitigation' (Representative Concentration Pathway, RCP2.6) and 'business-as-usual' (RCP8.5) climate change scenarios, respectively, by the year 2050 relative to 2000. The hypothetical substitution of seafood with selected alternative non-traditional foods does not provide adequate amounts of nutrients. CONCLUSION: Traditionally-harvested seafood remains fundamental to the contemporary diet and health of coastal BC FNs. Potential dietary shifts aggravated by climate-related declines in seafood consumption may have significant nutritional and health implications for BC FN. Strategies to improve access to seafood harvest potential in coastal communities are needed to ensure nutritional health and overall well-being and to promote food security and food sovereignty in coastal FNs.


Asunto(s)
Cambio Climático , Indígenas Norteamericanos , Estado Nutricional , Alimentos Marinos , Adulto , Animales , Colombia Británica , Femenino , Abastecimiento de Alimentos , Humanos , Masculino , Persona de Mediana Edad , Grupos de Población , Ingesta Diaria Recomendada , Alimentos Marinos/análisis , Adulto Joven
15.
Proc Biol Sci ; 285(1883)2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30051864

RESUMEN

While changes in the abundance of keystone predators can have cascading effects resulting in regime shifts, the role of mesopredators in these processes remains underexplored. We conducted annual surveys of rocky reef communities that varied in the recovery of a keystone predator (sea otter, Enhydra lutris) and the mass mortality of a mesopredator (sunflower sea star, Pycnopodia helianthoides) due to an infectious wasting disease. By fitting a population model to empirical data, we show that sea otters had the greatest impact on the mortality of large sea urchins, but that Pycnopodia decline corresponded to a 311% increase in medium urchins and a 30% decline in kelp densities. Our results reveal that predator complementarity in size-selective prey consumption strengthens top-down control on urchins, affecting the resilience of alternative reef states by reinforcing the resilience of kelp forests and eroding the resilience of urchin barrens. We reveal previously underappreciated species interactions within a 'classic' trophic cascade and regime shift, highlighting the critical role of middle-level predators in mediating rocky reef state transitions.


Asunto(s)
Cadena Alimentaria , Kelp , Nutrias , Estrellas de Mar , Animales , Tamaño Corporal , Colombia Británica , Densidad de Población
16.
Am Nat ; 192(1): 49-61, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897803

RESUMEN

The roles of dispersal and recruitment have long been a focal point in ecology and conservation. The adopted migrant hypothesis proposes a life history in which social learning transmits migratory knowledge between generations of iteroparous fish. Specifically, juveniles disperse from the parental spawning site, encounter and recruit to a local adult population, and learn migration routes between spawning and foraging habitats by following older, experienced fish. Although the adopted migrant life history may apply to many species of pelagic marine fishes, there is scant theoretical or empirical work on the consequent population dynamics. We developed and analyzed a mathematical model of this life history in which the recruitment of juveniles depends on the relative abundance of the local populations and recruitment overlap, which measures the ease with which juveniles are recruited by a nonparental population. We demonstrate that the adopted migrant life history can maintain spatial demographic structure among local populations, that it can also predispose local populations to collapse when a tipping point is crossed, and that recovery after collapse is impaired by reduced recruitment at small local population sizes.


Asunto(s)
Distribución Animal , Migración Animal , Peces , Modelos Biológicos , Aprendizaje Social , Animales , Rasgos de la Historia de Vida , Dinámica Poblacional
17.
Ecol Appl ; 27(3): 799-813, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27984678

RESUMEN

Coastal communities worldwide rely on small-scale artisanal fisheries as a means of increasing food security and alleviating poverty. Even small-scale fishing activities, however, are prone to resource depletion and environmental degradation, which can erode livelihoods in the long run. Thus, there is a pressing need to identify viable and resilient artisanal fisheries, and generate knowledge to support management within the context of a rapidly changing climate. We examined the ecosystem-level consequences of an artisanal kelp fishery (Macrocystis pyrifera), finding small-scale harvest of this highly productive species poses minimal impacts on kelp recovery rates, survival, and biomass dynamics, and abundances of associated commercial and culturally important fish species. These results suggest that small-scale harvest poses minimal trade-offs for the other economic benefits provided by these ecosystems, and their inherent, spiritual, and cultural value to humans. However, we detected a negative impact of warmer seawater temperatures on kelp recovery rates following harvest, indicating that the viability of harvest, even at small scales, may be threatened by future increases in global ocean temperature. This suggests that negative impacts of artisanal fisheries may be more likely to arise in the context of a warming climate, further highlighting the widespread effects of global climate change on coastal fisheries and livelihoods.


Asunto(s)
Cambio Climático , Ecosistema , Explotaciones Pesqueras , Kelp , Macrocystis , Colombia Británica , Conservación de los Recursos Naturales , Dinámica Poblacional
18.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849580

RESUMEN

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Asunto(s)
Ecosistema , Bosques , Kelp/crecimiento & desarrollo , Regiones Árticas , Cambio Climático , Océanos y Mares
19.
Proc Biol Sci ; 283(1833)2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27335422

RESUMEN

Theory predicts that bottom-heavy biomass pyramids or 'stacks' should predominate in real-world communities if trophic-level increases with body size (mean predator-to-prey mass ratio (PPMR) more than 1). However, recent research suggests that inverted biomass pyramids (IBPs) characterize relatively pristine reef fish communities. Here, we estimated the slope of a kelp forest fish community biomass spectrum from underwater visual surveys. The observed biomass spectrum slope is strongly positive, reflecting an IBP. This is incongruous with theory because this steep positive slope would only be expected if trophic position decreased with increasing body size (consumer-to-resource mass ratio, less than 1). We then used δ(15)N signatures of fish muscle tissue to quantify the relationship between trophic position and body size and instead detected strong evidence for the opposite, with PPMR ≈ 1650 (50% credible interval 280-12 000). The natural history of kelp forest reef fishes suggests that this paradox could arise from energetic subsidies in the form of movement of mobile consumers across habitats, and from seasonally pulsed production inputs at small body sizes. There were four to five times more biomass at large body sizes (1-2 kg) than would be expected in a closed steady-state community providing a measure of the magnitude of subsidies.


Asunto(s)
Biomasa , Peces , Cadena Alimentaria , Kelp , Animales
20.
Ecol Evol ; 6(4): 1041-53, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26941943

RESUMEN

Predation can influence the magnitude of herbivory that grazers exert on primary producers by altering both grazer abundance and their per capita consumption rates via changes in behavior, density-dependent effects, and size. Therefore, models based solely on changes in abundance may miss key components of grazing pressure. We estimated shifts in grazing pressure associated with changes in the abundance and per capita consumption rates of sea urchins triggered by size-selective predation by sea otters (Enhydra lutris). Field surveys suggest that sea otters dramatically decreased the abundance and median size of sea urchins. Furthermore, laboratory experiments revealed that kelp consumption by sea urchins varied nonlinearly as a function of urchin size such that consumption rates increased to the 0.56 and 0.68 power of biomass for red and green urchins, respectively. This reveals that shifts in urchin size structure due to size-selective predation by sea otters alter sea urchin per capita grazing rates. Comparison of two quantitative models estimating total consumptive capacity revealed that a model incorporating shifts in urchin abundance while neglecting urchin size structure overestimated grazing pressure compared to a model that incorporated size. Consequently, incorporating shifts in urchin size better predicted field estimates of kelp abundance compared to equivalent models based on urchin abundance alone. We provide strong evidence that incorporating size-specific parameters increases our ability to describe and predict trophic interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...