Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 21(2): 395-409, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35014847

RESUMEN

Chimeric antigen receptor (CAR) is a single-pass transmembrane receptor designed to specifically target and eliminate cancers. While CARs prove highly efficacious against B cell malignancies, the intracellular signaling events which promote CAR T cell activity remain elusive. To gain further insight into both CAR T cell signaling and the potential signaling response of cells targeted by CAR, we analyzed phosphopeptides captured by two separate phosphoenrichment strategies from third generation CD19-CAR T cells cocultured with SILAC labeled Raji B cells by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we report that CD19-CAR T cells upregulated several key phosphorylation events also observed in canonical T cell receptor (TCR) signaling, while Raji B cells exhibited a significant decrease in B cell receptor-signaling related phosphorylation events in response to coculture. Our data suggest that CD19-CAR stimulation activates a mixture of unique CD19-CAR-specific signaling pathways and canonical TCR signaling, while global phosphorylation in Raji B cells is reduced after association with the CD19-CAR T cells.


Asunto(s)
Linfocitos T , Espectrometría de Masas en Tándem , Cromatografía Liquida , Fosforilación , Receptores de Antígenos de Linfocitos T , Transducción de Señal
2.
Mol Cell Proteomics ; 19(4): 730-743, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32071147

RESUMEN

Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.


Asunto(s)
Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Vanadatos/metabolismo , Humanos , Iones , Células Jurkat , Fosfopéptidos/metabolismo
3.
Sci Rep ; 9(1): 15815, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676852

RESUMEN

Cytochrome c (Cytc) is a multifunctional protein, acting as an electron carrier in the electron transport chain (ETC), where it shuttles electrons from bc1 complex to cytochrome c oxidase (COX), and as a trigger of type II apoptosis when released from the mitochondria. We previously showed that Cytc is regulated in a highly tissue-specific manner: Cytc isolated from heart, liver, and kidney is phosphorylated on Y97, Y48, and T28, respectively. Here, we have analyzed the effect of a new Cytc phosphorylation site, threonine 58, which we mapped in rat kidney Cytc by mass spectrometry. We generated and overexpressed wild-type, phosphomimetic T58E, and two controls, T58A and T58I Cytc; the latter replacement is found in human and testis-specific Cytc. In vitro, COX activity, caspase-3 activity, and heme degradation in the presence of H2O2 were decreased with phosphomimetic Cytc compared to wild-type. Cytc-knockout cells expressing T58E or T58I Cytc showed a reduction in intact cell respiration, mitochondrial membrane potential (∆Ψm), ROS production, and apoptotic activity compared to wild-type. We propose that, under physiological conditions, Cytc is phosphorylated, which controls mitochondrial respiration and apoptosis. Under conditions of stress Cytc phosphorylations are lost leading to maximal respiration rates, ∆Ψm hyperpolarization, ROS production, and apoptosis.


Asunto(s)
Apoptosis , Citocromos c/metabolismo , Treonina/metabolismo , Secuencia de Aminoácidos , Animales , Citocromos c/química , Humanos , Ratones , Fosforilación
4.
FASEB J ; 33(12): 13503-13514, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570002

RESUMEN

Cytochrome c (Cytc) is a multifunctional protein that operates as an electron carrier in the mitochondrial electron transport chain and plays a key role in apoptosis. We have previously shown that tissue-specific phosphorylations of Cytc in the heart, liver, and kidney play an important role in the regulation of cellular respiration and cell death. Here, we report that Cytc purified from mammalian brain is phosphorylated on S47 and that this phosphorylation is lost during ischemia. We have characterized the functional effects in vitro using phosphorylated Cytc purified from pig brain tissue and a recombinant phosphomimetic mutant (S47E). We crystallized S47E phosphomimetic Cytc at 1.55 Å and suggest that it spatially matches S47-phosphorylated Cytc, making it a good model system. Both S47-phosphorylated and phosphomimetic Cytc showed a lower oxygen consumption rate in reaction with isolated Cytc oxidase, which we propose maintains intermediate mitochondrial membrane potentials under physiologic conditions, thus minimizing production of reactive oxygen species. S47-phosphorylated and phosphomimetic Cytc showed lower caspase-3 activity. Furthermore, phosphomimetic Cytc had decreased cardiolipin peroxidase activity and is more stable in the presence of H2O2. Our data suggest that S47 phosphorylation of Cytc is tissue protective and promotes cell survival in the brain.-Kalpage, H. A., Vaishnav, A., Liu, J., Varughese, A., Wan, J., Turner, A. A., Ji, Q., Zurek, M. P., Kapralov, A. A., Kagan, V. E., Brunzelle, J. S., Recanati, M.-A., Grossman, L. I., Sanderson, T. H., Lee, I., Salomon, A. R., Edwards, B. F. P, Hüttemann, M. Serine-47 phosphorylation of cytochrome c in the mammalian brain regulates cytochrome c oxidase and caspase-3 activity.


Asunto(s)
Encéfalo/metabolismo , Caspasa 3/metabolismo , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión/metabolismo , Serina/metabolismo , Animales , Apoptosis , Caspasa 3/genética , Respiración de la Célula , Cristalografía por Rayos X , Citocromos c/química , Citocromos c/genética , Complejo IV de Transporte de Electrones/genética , Potencial de la Membrana Mitocondrial , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Fosforilación , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/patología , Serina/química , Serina/genética , Porcinos
5.
Cell Metab ; 29(1): 141-155.e9, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30174305

RESUMEN

Successful metastasis requires the co-evolution of stromal and cancer cells. We used stable isotope labeling of amino acids in cell culture coupled with quantitative, label-free phosphoproteomics to study the bidirectional signaling in ovarian cancer cells and human-derived, cancer-associated fibroblasts (CAFs) after co-culture. In cancer cells, the interaction with CAFs supported glycogenolysis under normoxic conditions and induced phosphorylation and activation of phosphoglucomutase 1, an enzyme involved in glycogen metabolism. Glycogen was funneled into glycolysis, leading to increased proliferation, invasion, and metastasis of cancer cells co-cultured with human CAFs. Glycogen mobilization in cancer cells was dependent on p38α MAPK activation in CAFs. In vivo, deletion of p38α in CAFs and glycogen phosphorylase inhibition in cancer cells reduced metastasis, suggesting that glycogen is an energy source used by cancer cells to facilitate metastatic tumor growth.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Glucógeno/metabolismo , Neoplasias Ováricas/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo/métodos , Femenino , Glucólisis , Humanos , Sistema de Señalización de MAP Quinasas , Ratones Desnudos , Microambiente Tumoral
6.
Nat Immunol ; 19(7): 733-741, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915297

RESUMEN

T cell-antigen receptor (TCR) signaling requires the sequential activities of the kinases Lck and Zap70. Upon TCR stimulation, Lck phosphorylates the TCR, thus leading to the recruitment, phosphorylation, and activation of Zap70. Lck binds and stabilizes phosho-Zap70 by using its SH2 domain, and Zap70 phosphorylates the critical adaptors LAT and SLP76, which coordinate downstream signaling. It is unclear whether phosphorylation of these adaptors occurs through passive diffusion or active recruitment. We report the discovery of a conserved proline-rich motif in LAT that mediates efficient LAT phosphorylation. Lck associates with this motif via its SH3 domain, and with phospho-Zap70 via its SH2 domain, thereby acting as a molecular bridge that facilitates the colocalization of Zap70 and LAT. Elimination of this proline-rich motif compromises TCR signaling and T cell development. These results demonstrate the remarkable multifunctionality of Lck, wherein each of its domains has evolved to orchestrate a distinct step in TCR signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencias de Aminoácidos , Animales , Células HEK293 , Humanos , Células Jurkat , Proteínas de la Membrana/química , Ratones , Ratones Endogámicos C57BL , Fosforilación , Prolina/análisis , Receptores de Antígenos de Linfocitos T/metabolismo , Timo/inmunología
7.
J Proteome Res ; 16(8): 2729-2742, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28644030

RESUMEN

Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca2+ signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr192 phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr192 phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Retroalimentación Fisiológica/fisiología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fosfolipasa C gamma/metabolismo , Fosfoproteínas/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Humanos , Células Jurkat , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Tirosina/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo
8.
J Proteomics ; 165: 69-74, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28634120

RESUMEN

Expanding the sequencing depth of the peptides with a statistically significant quantitative change derived from a biological stimulation is critical. Here we demonstrate that optimization of LC gradient and analytical column construction can reveal over 30,000 unique peptides and 23,000 phosphopeptides at high confidence. The quantitative reproducibility of different analytical workflows was evaluated by comparing the phosphoproteome of CD3/4 stimulated and unstimulated T-cells as a model system. A fritless, 50cm-long column packed with 1.9µm particles operated with a standard pressure HPLC significantly improved the sequencing depth 51% and decreased the selected ion chromatogram peak spreading. Most importantly, under the optimal workflow we observed an improvement of over 300% in detection of significantly changed phosphopeptides in the stimulated cells compared with the other workflows. The discovery power of the optimized column configuration was illustrated by identification of significantly altered phosphopeptides harboring novel sites from proteins previously established as important in T cell signaling including A-Raf, B-Raf, c-Myc, CARMA1, Fyn, ITK, LAT, NFAT1/2/3, PKCα, PLCγ1/2, RAF1, and SOS1. Taken together, our results reveal the analytical power of optimized chromatography using sub 2µm particles for the analysis of the T cell phosphoproteome to reveal a vast landscape of significantly altered phosphorylation changes in response to T cell receptor stimulation.


Asunto(s)
Cromatografía Liquida/instrumentación , Fosfopéptidos/análisis , Proteómica/métodos , Animales , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Diseño de Equipo , Humanos , Activación de Linfocitos , Fosfoproteínas/análisis , Fosforilación , Proteoma/análisis , Proteómica/instrumentación , Proteómica/normas , Reproducibilidad de los Resultados , Transducción de Señal , Linfocitos T/química , Linfocitos T/metabolismo , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Flujo de Trabajo
9.
Methods Mol Biol ; 1584: 369-382, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28255713

RESUMEN

TCR signaling critically depends on protein phosphorylation across many proteins. Localization of each phosphorylation event relative to the T-cell receptor (TCR) and canonical T-cell signaling proteins will provide clues about the structure of TCR signaling networks. Quantitative phosphoproteomic analysis by mass spectrometry provides a wide-scale view of cellular phosphorylation networks. However, analysis of phosphorylation by mass spectrometry is still challenging due to the relative low abundance of phosphorylated proteins relative to all proteins and the extraordinary diversity of phosphorylation sites across the proteome. Highly selective enrichment of phosphorylated peptides is essential to provide the most comprehensive view of the phosphoproteome. Optimization of phosphopeptide enrichment methods coupled with highly sensitive mass spectrometry workflows significantly improves the sequencing depth of the phosphoproteome to over 10,000 unique phosphorylation sites from complex cell lysates. Here we describe a step-by-step method for phosphoproteomic analysis that has achieved widespread success for identification of serine, threonine, and tyrosine phosphorylation. Reproducible quantification of relative phosphopeptide abundance is provided by intensity-based label-free quantitation. An ideal set of mass spectrometry analysis parameters is also provided that optimize the yield of identified sites. We also provide guidelines for the bioinformatic analysis of this type of data to assess the quality of the data and to comply with proteomic data reporting requirements.


Asunto(s)
Fosfoproteínas/inmunología , Proteómica/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Humanos , Fosforilación/inmunología
10.
Cell Rep ; 18(10): 2373-2386, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28273453

RESUMEN

Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95high-expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95.


Asunto(s)
Interferón Tipo I/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor de Transcripción STAT1/metabolismo , Receptor fas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Marcaje Isotópico , Fosforilación , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Regulación hacia Arriba
11.
Oncotarget ; 8(16): 26041-26056, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28199961

RESUMEN

We have shown previously that rapamycin, the canonical inhibitor of the mechanistic target of rapamycin (mTOR) complex 1, markedly inhibits the growth of focal lesions in the resistant hepatocyte (Solt-Farber) model of hepatocellular carcinoma (HCC) in the rat. In the present study, we characterized the proteome of persistent, pre-neoplastic focal lesions in this model. One group was administered rapamycin by subcutaneous pellet for 3 weeks following partial hepatectomy and euthanized 4 weeks after the cessation of rapamycin. A second group received placebo pellets. Results were compared to unmanipulated control animals and to animals that underwent an incomplete Solt-Farber protocol to activate hepatic progenitor cells. Regions of formalin-fixed, paraffin-embedded tissue were obtained by laser capture microdissection (LCM). Proteomic analysis yielded 11,070 unique peptides representing 2,227 proteins. Quantitation of the peptides showed increased abundance of known HCC markers (e.g., glutathione S-transferase-P, epoxide hydrolase, 6 others) and potential markers (e.g., aflatoxin aldehyde reductase, glucose 6-phosphate dehydrogenase, 10 others) in foci from placebo-treated and rapamycin-treated rats. Peptides derived from cytochrome P450 enzymes were generally reduced. Comparisons of the rapamycin samples to normal liver and to the progenitor cell model indicated that rapamycin attenuated a loss of differentiation relative to placebo. We conclude that early administration of rapamycin in the Solt-Farber model not only inhibits the growth of pre-neoplastic foci but also attenuates the loss of differentiated function. In addition, we have demonstrated that the combination of LCM and mass spectrometry-based proteomics is an effective approach to characterize focal liver lesions.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/metabolismo , Proteoma , Proteómica , Animales , Biomarcadores , Cromatografía Liquida , Modelos Animales de Enfermedad , Masculino , Péptidos/metabolismo , Proteómica/métodos , Ratas , Transducción de Señal , Espectrometría de Masas en Tándem
12.
J Biol Chem ; 292(1): 64-79, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27758862

RESUMEN

Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via "controlled respiration," preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis.


Asunto(s)
Adenilato Quinasa/metabolismo , Respiración de la Célula/fisiología , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Riñón/metabolismo , Treonina/metabolismo , Adenilato Quinasa/química , Animales , Apoptosis , Cristalografía por Rayos X , Citocromos c/química , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Riñón/citología , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo
13.
J Proteomics ; 143: 15-23, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27113134

RESUMEN

UNLABELLED: Allergen levels in fresh and processed foods can vary dynamically. As different sources of foods can cause different types of allergic reactions, the food industry and regulatory bodies urgently require reliable detection and absolute quantitation methods for allergen detection in complex food products to effectively safeguard the food-allergic population. Recent advances of targeted proteomic technologies namely multiple-reaction monitoring (MRM) mass spectrometry (MS) coupled with isotope-labeled internal standard, also known as AQUA peptides offers absolute quantitation of food allergens even at 10ppb level in a multiplex fashion. However, development of successful AQUA-MRM assay relies on a number of pre and post MS criteria. In this review, we briefly describe how allergen levels could potentially change in plant and animal based foods, necessitating the development of a high throughput multiplexed allergen quantification methodology for successful AQUA-MRM assay. We also propose some future strategies that could provide better management of food allergy. BIOLOGICAL SIGNIFICANCE: Given the rapid increases of food allergenicity, it has become imperative to know absolute allergen levels in foods. This essential information could be the most effective means of protecting humans suffering from allergies. In this review, we emphasize the significance of the absolute quantitation of food allergens using AQUA-MRM approach and discuss the likely critical steps for successful assay development.


Asunto(s)
Alérgenos/análisis , Hipersensibilidad a los Alimentos/diagnóstico , Proteómica/métodos , Humanos , Marcaje Isotópico , Espectrometría de Masas
14.
J Proteome Res ; 14(7): 2963-75, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26043137

RESUMEN

Vav1, a Rac/Rho guanine nucleotide exchange factor and a critical component of the T-cell receptor (TCR) signaling cascade is tyrosine phosphorylated rapidly in response to T-cell activation. Vav1 has established roles in proliferation, cytokine secretion, Ca(2+) responses, and actin cytoskeleton regulation; however, its function in the regulation of phosphorylation of TCR components, including the ζ chain, the CD3 δ, ε, γ chains, and the associated kinases Lck and ZAP-70, is not well established. To obtain a more comprehensive picture of the role of Vav1 in receptor proximal signaling, we performed a wide-scale characterization of Vav1-dependent tyrosine phosphorylation events using quantitative phosphoproteomic analysis of Vav1-deficient T cells across a time course of TCR stimulation. Importantly, this study revealed a new function for Vav1 in the negative feedback regulation of the phosphorylation of immunoreceptor tyrosine-based activation motifs within the ζ chains, CD3 δ, ε, γ chains, as well as activation sites on the critical T cell tyrosine kinases Itk, Lck, and ZAP-70. Our study also uncovered a previously unappreciated role for Vav1 in crosstalk between the CD28 and TCR signaling pathways.


Asunto(s)
Antígenos CD28/metabolismo , Activación de Linfocitos/fisiología , Proteínas Proto-Oncogénicas c-vav/fisiología , Receptor Cross-Talk , Receptores de Antígenos de Linfocitos T/fisiología , Linfocitos T/inmunología , Humanos , Células Jurkat , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-vav/metabolismo , Transducción de Señal , Proteína Tirosina Quinasa ZAP-70/metabolismo
15.
Exp Cell Res ; 335(2): 224-37, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25999147

RESUMEN

Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders.


Asunto(s)
Fosfoproteínas Fosfatasas/fisiología , Adaptación Fisiológica , Dominio Catalítico , Proliferación Celular , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/fisiología , Proteoma/metabolismo , ARN Interferente Pequeño/genética , Transcriptoma
16.
J Proteome Res ; 14(5): 2082-9, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25839225

RESUMEN

The activation of T lymphocytes through antigen-mediated T cell receptor (TCR) clustering is vital in regulating the adaptive immune response. Although T cell receptor signaling has been extensively studied, the fundamental mechanisms for signal initiation are not fully understood. Reduced temperatures have initiated some of the hallmarks of TCR signaling, such as increased phosphorylation and activation on ERK and calcium release from the endoplasmic reticulum, as well as coalesced the T cell membrane microdomains. The precise mechanism of the TCR signaling initiation due to temperature change remains obscure. One critical question is whether the signaling initiated by the cold treatment of T cells differs from the signaling initiated by the cross-linking of the T cell receptor. To address this uncertainty, we performed a wide-scale, quantitative mass-spectrometry-based phosphoproteomic analysis on T cells stimulated either by temperature shifts or through the cross-linking of the TCR. Careful statistical comparisons between the two stimulations revealed a striking level of identity among the subset of 339 sites that changed significantly with both stimulations. This study demonstrates for the first time, in unprecedented detail, that T cell cold treatment was sufficient to initiate signaling patterns that were nearly identical to those of soluble antibody stimulation, shedding new light on the mechanism of activation of these critically important immune cells.


Asunto(s)
Proteínas del Citoesqueleto/aislamiento & purificación , Fosfoproteínas/aislamiento & purificación , Proteoma/aislamiento & purificación , Receptores de Antígenos de Linfocitos T/inmunología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/inmunología , Anticuerpos/farmacología , Frío , Proteínas del Citoesqueleto/inmunología , Humanos , Células Jurkat , Activación de Linfocitos/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/inmunología , Fosfoproteínas/inmunología , Fosforilación , Proteoma/inmunología , Receptores de Antígenos de Linfocitos T/química , Transducción de Señal
17.
Curr Opin Immunol ; 33: 78-85, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25687331

RESUMEN

The signal transduction pathways initiated by lymphocyte activation play a critical role in regulating host immunity. High-resolution mass spectrometry has accelerated the investigation of these complex and dynamic pathways by enabling the qualitative and quantitative investigation of thousands of proteins and phosphoproteins simultaneously. In addition, the unbiased and wide-scale identification of protein-protein interaction networks and protein kinase substrates in lymphocyte signaling pathways can be achieved by mass spectrometry-based approaches. Critically, the integration of these discovery-driven strategies with single-cell analysis using mass cytometry can facilitate the understanding of complex signaling phenotypes in distinct immunophenotypes.


Asunto(s)
Activación de Linfocitos , Linfocitos/inmunología , Linfocitos/metabolismo , Mapas de Interacción de Proteínas , Transducción de Señal , Animales , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Humanos , Modelos Estadísticos , Fosforilación , Fosfotransferasas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma , Proteómica/métodos , Análisis de la Célula Individual , Especificidad por Sustrato
18.
Mol Cell Proteomics ; 14(1): 30-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25316710

RESUMEN

SRC homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is a cytosolic adaptor protein that plays an important role in the T-cell receptor-mediated T-cell signaling pathway. SLP-76 links proximal receptor stimulation to downstream effectors through interaction with many signaling proteins. Previous studies showed that mutation of three tyrosine residues, Tyr(112), Tyr(128), and Tyr(145), in the N terminus of SLP-76 results in severely impaired phosphorylation and activation of Itk and PLCγ1, which leads to defective calcium mobilization, Erk activation, and NFAT activation. To expand our knowledge of the role of N-terminal phosphorylation of SLP-76 from these three tyrosine sites, we characterized nearly 1000 tyrosine phosphorylation sites via mass spectrometry in SLP-76 reconstituted wild-type cells and SLP-76 mutant cells in which three tyrosine residues were replaced with phenylalanines (Y3F mutant). Mutation of the three N-terminal tyrosine residues of SLP-76 phenocopied SLP-76-deficient cells for the majority of tyrosine phosphorylation sites observed, including feedback on proximal T-cell receptor signaling proteins. Meanwhile, reversed phosphorylation changes were observed on Tyr(192) of Lck when we compared mutants to the complete removal of SLP-76. In addition, N-terminal tyrosine sites of SLP-76 also perturbed phosphorylation of Tyr(440) of Fyn, Tyr(702) of PLCγ1, Tyr(204), Tyr(397), and Tyr(69) of ZAP-70, revealing new modes of regulation on these sites. All these findings confirmed the central role of N-terminal tyrosine sites of SLP-76 in the pathway and also shed light on novel signaling events that are uniquely regulated by SLP-76 N-terminal tyrosine residues.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Tirosina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Humanos , Mutación , Fosfoproteínas/genética , Fosforilación , Proteómica , Transducción de Señal , Proteína Tirosina Quinasa ZAP-70/metabolismo
19.
PLoS One ; 8(11): e78627, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223835

RESUMEN

Recent advancements in isolation techniques for cytochrome c (Cytc) have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.


Asunto(s)
Isquemia Encefálica/metabolismo , Citocromos c/metabolismo , Insulina/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Procesamiento Proteico-Postraduccional , Tirosina/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Supervivencia Celular/efectos de los fármacos , Citocromos c/genética , Expresión Génica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosforilación/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray , Porcinos
20.
PLoS One ; 8(7): e69641, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874979

RESUMEN

Competing positive and negative signaling feedback pathways play a critical role in tuning the sensitivity of T cell receptor activation by creating an ultrasensitive, bistable switch to selectively enhance responses to foreign ligands while suppressing signals from self peptides. In response to T cell receptor agonist engagement, ERK is activated to positively regulate T cell receptor signaling through phosphorylation of Ser(59) Lck. To obtain a wide-scale view of the role of ERK in propagating T cell receptor signaling, a quantitative phosphoproteomic analysis of 322 tyrosine phosphorylation sites by mass spectrometry was performed on the human Jurkat T cell line in the presence of U0126, an inhibitor of ERK activation. Relative to controls, U0126-treated cells showed constitutive decreases in phosphorylation through a T cell receptor stimulation time course on tyrosine residues found on upstream signaling proteins (CD3 chains, Lck, ZAP-70), as well as downstream signaling proteins (VAV1, PLCγ1, Itk, NCK1). Additional constitutive decreases in phosphorylation were found on the majority of identified proteins implicated in the regulation of actin cytoskeleton pathway. Although the majority of identified sites on T cell receptor signaling proteins showed decreases in phosphorylation, Tyr(598) of ZAP-70 showed elevated phosphorylation in response to U0126 treatment, suggesting differential regulation of this site via ERK feedback. These findings shed new light on ERK's role in positive feedback in T cell receptor signaling and reveal novel signaling events that are regulated by this kinase, which may fine tune T cell receptor activation.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Linfocitos T/metabolismo , Tirosina/metabolismo , Cromatografía Liquida , Humanos , Células Jurkat , Fosforilación , Transducción de Señal , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA