RESUMEN
CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Diferenciación Celular , Proliferación Celular , Receptores de Antígenos de Linfocitos TRESUMEN
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Asunto(s)
Linfocitos T Reguladores/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Enfermedades Reumáticas/tratamiento farmacológico , Linfocitos T Reguladores/fisiología , Factor de Necrosis Tumoral alfa/fisiologíaRESUMEN
BACKGROUND: Septic shock remains a major cause of death that can be complicated by long-term impairment in immune function. Among regulatory T (Treg) cells, the tumor necrosis factor receptor 2 positive (TNFR2pos) Treg-cell subset endorses significant immunosuppressive functions in human tumors and a sepsis mouse model but has not been investigated during septic shock in humans. METHODS: We prospectively enrolled patients with septic shock hospitalized in intensive care units (ICU). We performed immunophenotyping and functional tests of CD4+ T cells, Treg cells, and TNFR2pos Treg cells on blood samples collected 1, 4, and 7 days after admission to ICU. RESULTS: We investigated 10 patients with septic shock compared to 10 healthy controls. Although the proportions of circulating Treg cells and TNFR2pos Treg-cell subsets were not increased, their CTLA4 expression and suppressive functions in vitro were increased at 4 days of septic shock. Peripheral blood mononuclear cells from healthy donors cultured with serum from septic shock patients had increased CTLA4 expression in TNFR2pos Treg cells compared to TNFR2neg Treg cells. CONCLUSIONS: In patients with septic shock, CTLA4 expression and suppressive function were increased in circulating TNFR2pos Treg cells. We identify TNFR2pos Treg cells as a potential attractive target for therapeutic intervention.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Sepsis/metabolismo , Choque Séptico/inmunología , Linfocitos T Reguladores/inmunología , Animales , Humanos , Terapia de Inmunosupresión , Leucocitos Mononucleares , RatonesRESUMEN
CD4+Foxp3+ regulatory T (Treg) cells are central modulators of autoimmune diseases. However, the timing and location of Treg cell-mediated suppression of tissue-specific autoimmunity remain undefined. Here, we addressed these questions by investigating the role of tumor necrosis factor (TNF) receptor 2 (TNFR2) signaling in Treg cells during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We found that TNFR2-expressing Treg cells were critical to suppress EAE at peak disease in the central nervous system but had no impact on T cell priming in lymphoid tissues at disease onset. Mechanistically, TNFR2 signaling maintained functional Treg cells with sustained expression of CTLA-4 and Blimp-1, allowing active suppression of pathogenic T cells in the inflamed central nervous system. This late effect of Treg cells was further confirmed by treating mice with TNF and TNFR2 agonists and antagonists. Our findings show that endogenous Treg cells specifically suppress an autoimmune disease by acting in the target tissue during overt inflammation. Moreover, they bring a mechanistic insight to some of the adverse effects of anti-TNF therapy in patients.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Médula Ósea/patología , Antígeno CTLA-4/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
OBJECTIVE: The intestinal epithelial barrier (IEB) restricts the passage of microbes and potentially harmful substances from the lumen through the paracellular space, and rupture of its integrity is associated with a variety of gastrointestinal disorders and extra-digestive diseases. Increased IEB permeability has been linked to disruption of metabolic homeostasis leading to obesity and type 2 diabetes. Interestingly, recent studies have uncovered compelling evidence that the AMP-activated protein kinase (AMPK) signaling pathway plays an important role in maintaining epithelial cell barrier function. However, our understanding of the function of intestinal AMPK in regulating IEB and glucose homeostasis remains sparse. METHODS: We generated mice lacking the two α1 and α2 AMPK catalytic subunits specifically in intestinal epithelial cells (IEC AMPK KO) and determined the physiological consequences of intestinal-specific deletion of AMPK in response to high-fat diet (HFD)-induced obesity. We combined histological, functional, and integrative analyses to ascertain the effects of gut AMPK loss on intestinal permeability in vivo and ex vivo and on the development of obesity and metabolic dysfunction. We also determined the impact of intestinal AMPK deletion in an inducible mouse model (i-IEC AMPK KO) by measuring IEB function, glucose homeostasis, and the composition of gut microbiota via fecal 16S rRNA sequencing. RESULTS: While there were no differences in in vivo intestinal permeability in WT and IEC AMPK KO mice, ex vivo transcellular and paracellular permeability measured in Ussing chambers was significantly increased in the distal colon of IEC AMPK KO mice. This was associated with a reduction in pSer425 GIV phosphorylation, a marker of leaky gut barrier. However, the expression of tight junction proteins in intestinal epithelial cells and pro-inflammatory cytokines in the lamina propria were not different between genotypes. Although the HFD-fed AMPK KO mice displayed suppression of the stress polarity signaling pathway and a concomitant increase in colon permeability, loss of intestinal AMPK did not exacerbate body weight gain or adiposity. Deletion of AMPK was also not sufficient to alter glucose homeostasis or the acute glucose-lowering action of metformin in control diet (CD)- or HFD-fed mice. CD-fed i-IEC AMPK KO mice also presented higher permeability in the distal colon under homeostatic conditions but, surprisingly, this was not detected upon HFD feeding. Alteration in epithelial barrier function in the i-IEC AMPK KO mice was associated with a shift in the gut microbiota composition with higher levels of Clostridiales and Desulfovibrionales. CONCLUSIONS: Altogether, our results revealed a significant role of intestinal AMPK in maintaining IEB integrity in the distal colon but not in regulating glucose homeostasis. Our data also highlight the complex interaction between gut microbiota and host AMPK.
Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Colon/metabolismo , Glucosa/metabolismo , Homeostasis , Animales , Bacterias/clasificación , Bacterias/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Heces/microbiología , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Masculino , Metformina/farmacología , Ratones , Ratones Noqueados , Obesidad/metabolismo , Permeabilidad/efectos de los fármacos , ARN Ribosómico 16SRESUMEN
CD4+ Foxp3+ regulatory T cells (Treg) are essential to maintain immune tolerance, as their loss leads to a fatal autoimmune syndrome in mice and humans. Conflicting findings have been reported concerning their metabolism. Some reports found that Treg have low mechanistic target of rapamycin (mTOR) activity and would be less dependent on this kinase compared with conventional T cells, whereas other reports suggest quite the opposite. In this study, we revisited this question by using mice that have a specific deletion of mTOR in Treg. These mice spontaneously develop a severe and systemic inflammation. We show that mTOR expression by Treg is critical for their differentiation into effector Treg and their migration into nonlymphoid tissues. We also reveal that mTOR-deficient Treg have reduced stability. This loss of Foxp3 expression is associated with partial Foxp3 DNA remethylation, which may be due to an increased activity of the glutaminolysis pathway. Thus, our work shows that mTOR is crucial for Treg differentiation, migration, and identity and that drugs targeting this metabolism pathway will impact on their biology.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Inflamación/genética , Linfocitos T Reguladores/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autoinmunidad/genética , Diferenciación Celular , Movimiento Celular , Metilación de ADN , Factores de Transcripción Forkhead/genética , Glutamina/metabolismo , Activación de Linfocitos , Ratones , Ratones Noqueados , Mutación/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Sepsis causes inflammation-induced immunosuppression with lymphopenia and alterations of CD4+ T-cell functions that renders the host prone to secondary infections. Whether and how regulatory T cells (Treg) are involved in this postseptic immunosuppression is unknown. We observed in vivo that early activation of Treg during Staphylococcus aureus sepsis induces CD4+ T-cell impairment and increases susceptibility to secondary pneumonia. The tumor necrosis factor receptor 2 positive (TNFR2pos) Treg subset endorsed the majority of effector immunosuppressive functions, and TNRF2 was particularly associated with activation of genes involved in cell cycle and replication in Treg, probably explaining their maintenance. Blocking or deleting TNFR2 during sepsis decreased the susceptibility to secondary infection. In humans, our data paralleled those in mice; the expression of CTLA-4 was dramatically increased in TNFR2pos Treg after culture in vitro with S. aureus. Our findings describe in vivo mechanisms underlying sepsis-induced immunosuppression and identify TNFR2pos Treg as targets for therapeutic intervention.
Asunto(s)
Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Sepsis/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Células Cultivadas , Femenino , Humanos , Terapia de Inmunosupresión , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Sepsis/microbiología , Staphylococcus aureus , Linfocitos T Reguladores/citologíaRESUMEN
BACKGROUND: In addition to their multilineage potential, mesenchymal stem cells (MSCs) have a broad range of functions from tissue regeneration to immunomodulation. MSCs have the ability to modulate the immune response and change the progression of different inflammatory and autoimmune disorders. However, there are still many challenges to overcome before their widespread clinical administration including the mechanisms behind their immunoregulatory function. MSCs inhibit effector T cells and other immune cells, while inducing regulatory T cells (T regs), thus, reducing directly and indirectly the production of pro-inflammatory cytokines. TNF/TNFR signaling plays a dual role: while the interaction of TNFα with TNFR1 mediates pro-inflammatory effects and cell death, its interaction with TNFR2 mediates anti-inflammatory effects and cell survival. Many immunosuppressive cells like T regs, regulatory B cells (B regs), endothelial progenitor cells (EPCs), and myeloid-derived suppressor cells (MDSCs) express TNFR2, and this is directly related to their immunosuppression efficiency. In this article, we investigated the role of the TNFα/TNFR2 immune checkpoint signaling pathway in the immunomodulatory capacities of MSCs. METHODS: Co-cultures of MSCs from wild-type (WT) and TNFR2 knocked-out (TNFR2 KO) mice with T cells (WT and TNFα KO) were performed under various experimental conditions. RESULTS: We demonstrate that TNFR2 is a key regulatory molecule which is strongly involved in the immunomodulatory properties of MSCs. This includes their ability to suppress T cell proliferation, activation, and pro-inflammatory cytokine production, in addition to their capacity to induce active T regs. CONCLUSIONS: Our results reveal for the first time the importance of the TNFα/TNFR2 axis as an active immune checkpoint regulating MSC immunological functions.
Asunto(s)
Células Madre Mesenquimatosas , Animales , Inmunomodulación , Ratones , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
BACKGROUND: Endothelial progenitor cells (EPCs) are non-differentiated endothelial cells (ECs) present in blood circulation that are involved in neo-vascularization and correction of damaged endothelial sites. Since EPCs from patients with vascular disorders are impaired and inefficient, allogenic sources from adult or cord blood are considered as good alternatives. However, due to the reaction of immune system against allogenic cells which usually lead to their elimination, we focused on the exact role of EPCs on immune cells, particularly, T cells which are the most important cells applied in immune rejection. TNFα is one of the main activators of EPCs that recognizes two distinct receptors. TNFR1 is expressed ubiquitously and its interaction with TNFα leads to differentiation and apoptosis, whereas, TNFR2 is expressed predominantly on ECs, immune cells and neural cells and is involved in cell survival and proliferation. Interestingly, it has been shown that different immunosuppressive cells express TNFR2 and this is directly related to their immunosuppressive efficiency. However, little is known about immunological profile and function of TNFR2 in EPCs. METHODS: Using different in-vitro combinations, we performed co-cultures of ECs and T cells to investigate the immunological effect of EPCs on T cells. We interrupted in the TNFα/TNFR2 axis either by blocking the receptor using TNFR2 antagonist or blocking the ligand using T cells derived from TNFα KO mice. RESULTS: We demonstrated that EPCs are able to suppress T cell proliferation and modulate them towards less pro-inflammatory and active phenotypes. Moreover, we showed that TNFα/TNFR2 immune-checkpoint pathway is critical in EPC immunomodulatory effect. CONCLUSIONS: Our results reveal for the first time a mechanism that EPCs use to suppress immune cells, therefore, enabling them to form new immunosuppressive vessels. Furthermore, we have shown the importance of TNFα/TNFR2 axis in EPCs as an immune checkpoint pathway. We believe that targeting TNFR2 is especially crucial in cancer immune therapy since it controls two crucial aspects of tumor microenvironment: 1) Immunosuppression and 2) Angiogenesis. Video Abstract. (MP4 46355 kb).
Asunto(s)
Células Progenitoras Endoteliales , Terapia de Inmunosupresión , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Linfocitos T/citología , Factor de Necrosis Tumoral alfa/inmunología , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Técnicas de Cocultivo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/inmunología , Femenino , Voluntarios Sanos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Transducción de Señal , Adulto JovenRESUMEN
Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.
Asunto(s)
Activación de Linfocitos , FN-kappa B/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Ratones , Ratones Noqueados , FN-kappa B/genética , Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal/genética , Linfocitos T Reguladores/citologíaRESUMEN
Regulatory T cells (Tregs) play a major role in immune homeostasis and in the prevention of autoimmune diseases. It has been shown that c-Rel is critical in Treg thymic differentiation, but little is known on the role of NF-κB on mature Treg biology. We thus generated mice with a specific knockout of RelA, a key member of NF-κB, in Tregs. These mice developed a severe autoimmune syndrome with multi-organ immune infiltration and high activation of lymphoid and myeloid cells. Phenotypic and transcriptomic analyses showed that RelA is critical in the acquisition of the effector Treg state independently of surrounding inflammatory environment. Unexpectedly, RelA-deficient Tregs also displayed reduced stability and cells that had lost Foxp3 produced inflammatory cytokines. Overall, we show that RelA is critical for Treg biology as it promotes both the generation of their effector phenotype and the maintenance of their identity.
Asunto(s)
Inmunomodulación , Activación de Linfocitos/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Inmunomodulación/genética , Inmunofenotipificación , Activación de Linfocitos/genética , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factor de Transcripción ReIA/químicaRESUMEN
Radiotherapy (RT) represents one of the main anticancer approaches for the treatment of solid tumors. Beyond the expected direct effects of RT on tumor cells, evidence supporting the importance of an immune response to RT is growing. The balance between RT-mediated immunogenic and tolerogenic activity is ill-defined and deserves more attention. Herein, a murine model of head and neck squamous cell carcinoma was used to demonstrate that RT upregulated CCL2 chemokine production in tumor cells, leading to a CCR2-dependent accumulation of tumor necrosis factor alpha (TNFα)-producing monocytes and CCR2+ regulatory T cells (Treg). This corecruitment was associated with a TNFα-dependent activation of Tregs, dampening the efficacy of RT. Our results highlight an unexpected cross-talk between innate and adaptive immune system components and indicate CCL2/CCR2 and TNFα as potential clinical candidates to counterbalance the radioprotective action of monocyte-derived cells and Tregs, paving the way for potent combined radioimmunotherapies.
Asunto(s)
Monocitos/inmunología , Tolerancia a Radiación/inmunología , Receptores CCR2/inmunología , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Línea Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/radioterapia , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Natural Killer (NK) cells control metastatic dissemination of murine tumors and are an important prognostic factor in several human malignancies. However, tumor cells hijack many of the NK cell functional features compromising their tumoricidal activity. Here, we show a deleterious role of the TNFα/TNFR2/BIRC3/TRAF1 signaling cascade in NK cells from the tumor microenvironment (TME). TNFα induces BIRC3/cIAP2 transcripts and reduces NKp46/NCR1 transcription and surface expression on NK cells, promoting metastases dissemination in mice and poor prognosis in GIST patients. NKp30 engagement, by promoting the release of TNFα, also contributes to BIRC3 upregulation, and more so in patients expressing predominantly NKp30C isoforms. These findings reveal that in the absence of IL-12 or a Th1-geared TME, TNFα can be considered as a negative regulatory cytokine for innate effectors.
RESUMEN
Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment.
Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Inmunoterapia/métodos , Neoplasias/terapia , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Enfermedades Autoinmunes/etiología , Proliferación Celular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Terapia de Inmunosupresión , Activación de Linfocitos , Neoplasias/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidoresRESUMEN
Therapeutic CD4(+)Foxp3(+) natural regulatory T cells (Tregs) can control experimental graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HCT) by suppressing conventional T cells (Tconvs). Treg-based therapies are currently tested in clinical trials with promising preliminary results in allo-HCT. Here, we hypothesized that as Tregs are capable of modulating Tconv response, it is likely that the inflammatory environment and particularly donor T cells are also capable of influencing Treg function. Indeed, previous findings in autoimmune diabetes revealed a feedback mechanism that renders Tconvs able to stimulate Tregs by a mechanism that was partially dependent on tumor necrosis factor (TNF). We tested this phenomenon during alloimmune response in our previously described model of GVHD protection using antigen specific Tregs. Using different experimental approaches, we observed that control of GVHD by Tregs was fully abolished by blocking TNF receptor type 2 (TNFR2) or by using TNF-deficient donor T cells or TNFR2-deficient Tregs. Thus, our results show that Tconvs exert a powerful modulatory activity on therapeutic Tregs and clearly demonstrate that the sole defect of TNF production by donor T cells was sufficient to completely abolish the Treg suppressive effect in GVHD. Importantly, our findings expand the understanding of one of the central components of Treg action, the inflammatory context, and support that targeting TNF/TNFR2 interaction represents an opportunity to efficiently modulate alloreactivity in allo-HCT to either exacerbate it for a powerful antileukemic effect or reduce it to control GVHD.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Femenino , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas , Ratones , Ratones Endogámicos C57BL , Trasplante HomólogoRESUMEN
The IL-2/JAK3/STAT-5 signaling pathway is involved on the initiation and maintenance of the transcription factor Foxp3 in regulatory T cells (Treg) and has been associated with demethylation of the intronic Conserved Non Coding Sequence-2 (CNS2). However, the role of the JAK/STAT pathway in controlling Foxp3 in the short term has been poorly investigated. Using two different JAK/STAT pharmacological inhibitors, we observed a detectable loss of Foxp3 after 10 min. of treatment that affected 70% of the cells after one hour. Using cycloheximide, a general inhibitor of mRNA translation, we determined that Foxp3, but not CD25, has a high turnover in IL-2 stimulated Treg. This reduction was correlated with a rapid reduction of Foxp3 mRNA. This loss of Foxp3 was associated with a loss in STAT-5 binding to the CNS2, which however remains demethylated. Consequently, Foxp3 expression returns to normal level upon restoration of basal JAK/STAT signaling in vivo. Reduced expression of several genes defining Treg identity was also observed upon treatment. Thus, our results demonstrate that Foxp3 has a rapid turn over in Treg partly controlled at the transcriptional level by the JAK/STAT pathway.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Janus Quinasa 3/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/citología , Animales , Metilación de ADN/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Humanos , Intrones/genética , Janus Quinasa 3/antagonistas & inhibidores , Ratones , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismoRESUMEN
CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell therapy is a promising approach for the treatment of autoimmune diseases. To be effective, Treg cells should be in an activated state in the target tissue. This can be achieved by systemic administration of Ag-specific Treg cells, which are difficult to produce in conditions that can be translated to the clinic. In this paper, we propose an alternative approach consisting of in situ injection of preactivated polyclonal Treg cells that would exert bystander suppression in the target tissue. We show that polyclonal Treg cells suppressed uveitis in mice as efficiently as Ag-specific Treg cells but only when preactivated and administered in the vitreous. Uveitis control was correlated with an increase of IL-10 and a decrease of reactive oxygen species produced by immune cell infiltrates in the eye. Thus, our results reveal a new mechanism of Treg cell-mediated suppression and a new Treg cell therapy approach.
Asunto(s)
Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Linfocitos T Reguladores/trasplante , Uveítis/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Linfocitos T Reguladores/inmunologíaRESUMEN
Central tolerance plays a key role in modulating immune responses to self and exogenous antigens. The absence of self-antigen expression, as in patients with genetic deficiencies, prevents the development of antigen-specific immune tolerance. Hence, a substantial number of patients develop neutralizing antibodies to the corresponding protein therapeutics after replacement treatment. In this context, the administration of missing antigens during fetal development, a key period for self-tolerance establishment, should confer early and long-lasting antigen-specific tolerance. To this end, we exploited the physiological pathway of the neonatal Fc receptor (FcRn) through which maternal immunoglobulins are transplacentally transferred to fetuses. We demonstrate that Fc-fused antigens administered to pregnant mice reach fetal lymphoid organs in an FcRn-dependent manner, accumulate in antigen-presenting cells of myeloid origin, and promote the generation of both thymic and peripheral antigen-specific regulatory T cells. This strategy was successfully pursued in a mouse model of hemophilia A, where maternofetal transfer of the Fc-fused immunodominant domains of coagulation factor VIII conferred antigen-specific tolerance. Transplacental tolerance induction with Fc-fused proteins may thus prove valuable to prevent alloimmunization after replacement protein therapy for congenital deficiencies.