Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Results Chem ; 62023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38855016

RESUMEN

γ-Hydroxyalkenals, 4-hydroxynonenal (HNE) and phospholipid esters of 4-hydroxy-8-oxooctenoic acid (HOOA-PL), are produced from the alkyl and carboxyl termini of arachidonyl phospholipids by radical-induced oxidative cleavage. Metabolism of HNE by Michael addition of glutathione (GSH) followed by reduction of the aldehyde carbonyl produces a GSH derivative of 1,4-dihydroxynonane (DHN)-GSH. Analogous biochemistry was anticipated to produce a GSH derivative of 5,8-dihydroxyoctanoic acid (DHOA-GSH) that has structural and functional similarity to the cysteinyl leukotriene (LT)C4. We now report that exposure of human retinal pigment epithelial cells to CoCl2, an in vitro model of hypoxia-induced oxidative stress, generates DHOA-GSH and two products of its peptidolysis, DHOA-CysGly and DHOA-Cys that resemble LTD4 and LTE4. Identification of these metabolites was confirmed by unambiguous chemical syntheses that also provided a heavy isotope labeled quantitative standard 13C2 15N-DHOA-GSH. The availability of pure samples of these arachidonate metabolites will enable assessment of their biological activities, and testing the hypothesis that øLTs promote pathological inflammation by serving as LT receptor agonists. Because LT biosynthetic enzymes, e.g., 5-lipoxygenase, are not involved in the generation of øLTs in vivo, inhibitors of LT biosynthesis, e.g., Zileuton, are not expected to prevent the generation of øLTs. On the other hand, if øLTs are leukotriene receptor agonists, then the therapeutic effects of leukotriene receptor antagonist drugs, e.g., Montelukast, may include inhibition not only of LT-induced but also øLT-induced LT receptor activation and signaling.

2.
Free Radic Biol Med ; 160: 719-733, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32920040

RESUMEN

Oxidation of docosahexaenoate (DHA)-containing phospholipids in the cell plasma membrane leads to release of the α,ß-unsaturated aldehyde 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone which is capable of inducing retinal pigmented epithelial (RPE) cell dysfunction. Previously, HOHA lactone was shown to induce apoptosis and angiogenesis, and to activate the alternative complement pathway. RPE cells metabolize HOHA lactone through enzymatic conjugation with glutathione (GSH). Competing with this process is the adduction of HOHA lactone to protein lysyl residues generating 2-(ω-carboxyethyl)pyrrole (CEP) derivatives that have pathological relevance to age-related macular degeneration (AMD). We now find that HOHA lactone induces mitochondrial dysfunction. It decreases ATP levels, mitochondrial membrane potentials, enzymatic activities of mitochondrial complexes, depletes GSH and induces oxidative stress in RPE cells. The present study confirmed that pyridoxamine and other primary amines, which have been shown to scavenge γ-ketoaldehydes formed by carbohydrate or lipid peroxidation, are ineffective for scavenging the α,ß-unsaturated aldehydes. Histidyl hydrazide (HH), that has both hydrazide and imidazole nucleophile functionalities, is an effective scavenger of HOHA lactone and it protects ARPE-19 cells against HOHA lactone-induced cytotoxicity. The HH α-amino group is not essential for this electrophile trapping activity. The Nα-acyl L-histidyl hydrazide derivatives with 2- to 7-carbon acyl groups with increasing lipophilicities are capable of maintaining the effectiveness of HH in protecting ARPE-19 cells against HOHA lactone toxicity, which potentially has therapeutic utility for treatment of age related eye diseases.


Asunto(s)
Lactonas , Epitelio Pigmentado de la Retina , Células Epiteliales , Lactonas/metabolismo , Lactonas/toxicidad , Mitocondrias , Estrés Oxidativo , Epitelio Pigmentado de la Retina/metabolismo
3.
Free Radic Biol Med ; 152: 280-294, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32222470

RESUMEN

Retinal pigment epithelial (RPE) cell dysfunction and death play vital roles in age-related macular degeneration (AMD) pathogenesis. Previously we showed that oxidative cleavage of docosahexenoate (DHA) phospholipids generates an α,ß-unsaturated aldehyde, 4-hydroxy-7-oxohept-4-enoic acid (HOHA) lactone, that forms ω-carboxyethylpyrrole (CEP) derivatives through adduction to proteins and ethanolamine phospholipids. CEP derivatives and autoantibodies accumulate in the retinas and blood plasma of individuals with AMD and are a biomarker of AMD. They promote the choroidal neovascularization of "wet AMD". Immunization of mice with CEP-modified mouse serum albumin induces "dry AMD"-like lesions in their retinas as well as interferon-gamma and interleukin-17 production by CEP-specific T cells that promote inflammatory M1 polarization of macrophages. The present study confirms that oxidative stress or inflammatory stimulus produces CEP in both the primary human ARPE-19 cell line and hRPE cells. Exposure of these cells to HOHA lactone fosters production of reactive oxygen species. Thus, HOHA lactone participates in a vicious cycle, promoting intracellular oxidative stress leading to oxidative cleavage of DHA to produce more HOHA lactone. We now show that HOHA lactone is cytotoxic, inducing apoptotic cell death through activation of the intrinsic pathway. This suggests that therapeutic interventions targeting HOHA lactone-induced apoptosis may prevent the loss of RPE cells during the early phase of AMD. We also discovered that ARPE-19 cells are more susceptible than hRPE cells to HOHA lactone cytotoxicity. This is consistent with the view that, compared to normal RPE cells, ARPE-19 cells exhibit a diseased RPE phenotype that also includes elevated expression of the mesenchymal indicator vimentin, elevated integrin a5 promotor strength and deficient secretion of the anti-VEGF molecule pigment-epithelium-derived factor fostering weaker tight junctions.


Asunto(s)
Lactonas , Epitelio Pigmentado de la Retina , Animales , Apoptosis , Células Epiteliales , Ratones , Estrés Oxidativo , Pigmentos Retinianos
4.
Cell Rep ; 30(7): 2209-2224.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075760

RESUMEN

Retinal degeneration is a form of neurodegenerative disease and is the leading cause of vision loss globally. The Toll-like receptors (TLRs) are primary components of the innate immune system involved in signal transduction. Here we show that TLR2 induces complement factors C3 and CFB, the common and rate-limiting factors of the alternative pathway in both retinal pigment epithelial (RPE) cells and mononuclear phagocytes. Neutralization of TLR2 reduces opsonizing fragments of C3 in the outer retina and protects photoreceptor neurons from oxidative stress-induced degeneration. TLR2 deficiency also preserves tight junction expression and promotes RPE resistance to fragmentation. Finally, oxidative stress-induced formation of the terminal complement membrane attack complex and Iba1+ cell infiltration are strikingly inhibited in the TLR2-deficient retina. Our data directly implicate TLR2 as a mediator of retinal degeneration in response to oxidative stress and present TLR2 as a bridge between oxidative damage and complement-mediated retinal pathology.


Asunto(s)
Estrés Oxidativo/fisiología , Degeneración Retiniana/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética
5.
Free Radic Biol Med ; 146: 234-256, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31715381

RESUMEN

Previously, we discovered that free radical-induced oxidative fragmentation of the docosahexaenoate ester of 2-lysophosphatidylcholine produces 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone that, in turn, promotes the migration and invasion of endothelial cells. This suggested that HOHA lactone might similarly promote migration and invasion of glioblastoma multiformae (GBM) brain cancer stem cells (CSCs). A bioinformatics analysis of clinical cancer genomic data revealed that matrix metalloproteinase (MMP)1 and three markers of oxidative stress - superoxide dismutase 2, NADPH oxidase 4, and carbonic anhydrase 9 - are upregulated in human mesenchymal GBM cancer tissue, and that MMP1 is positively correlated to all three of these oxidative stress markers. In addition, elevated levels of MMP1 are indicative of GBM invasion, while low levels of MMP1 indicate survival. We also explored the hypothesis that the transition from the proneural to the more aggressive mesenchymal phenotype, e.g., after treatment with an anti-angiogenic therapy, is promoted by the effects of lipid oxidation products on GBM CSCs. We found that low micromolar concentrations of HOHA lactone increase the cell migration velocity of cultured GBM CSCs, and induce the expression of MMP1 and two protein biomarkers of the proneural to mesenchymal transition (PMT): p65 NF-κß and vimentin. Exposure of cultured GBM CSCs to HOHA lactone causes an increase in phosphorylation of mitogen-activated protein kinases and Akt kinases that are dependent on both protease-activated receptor 1 (PAR1) and MMP1 activity. We conclude that HOHA lactone promotes the PMT in GBM through the activation of PAR1 and MMP1. This contributes to a fatal flaw in antiangiogenic, chemo, and radiation therapies: they promote oxidative stress and the generation of HOHA lactone in the tumor that fosters a change from the proliferative proneural to the migratory mesenchymal GBM CSC phenotype that seeds new tumor growth. Inhibition of PAR1 and HOHA lactone are potential new therapeutic targets for impeding GBM tumor recurrence.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Encéfalo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular , Células Endoteliales , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Lactonas/farmacología , Invasividad Neoplásica , Recurrencia Local de Neoplasia
6.
High Throughput ; 8(2)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083423

RESUMEN

Isoprostane endoperoxides generated by free radical-induced oxidation of arachidonates, and prostaglandin endoperoxides generated through enzymatic cyclooxygenation of arachidonate, rearrange nonenzymatically to isoprostanes and a family of stereo and structurally isomeric γ-ketoaldehyde seco-isoprostanes, collectively known as isolevuglandins (isoLGs). IsoLGs are stealthy toxins, and free isoLGs are not detected in vivo. Rather, covalent adducts are found to incorporate lysyl ε-amino residues of proteins or ethanolamino residues of phospholipids. In vitro studies have revealed that adduction occurs within seconds and is uniquely prone to cause protein-protein crosslinks. IsoLGs accelerate the formation of the type of amyloid beta oligomers that have been associated with neurotoxicity. Under air, isoLG-derived pyrroles generated initially are readily oxidized to lactams and undergo rapid oxidative coupling to pyrrole-pyrrole crosslinked dimers, and to more highly oxygenated derivatives of those dimers. We have now found that pure isoLG-derived pyrroles, which can be generated under anoxic conditions, do not readily undergo oxidative coupling. Rather, dimer formation only occurs after an induction period by an autocatalytic oxidative coupling. The stable free-radical TEMPO abolishes the induction period, catalyzing rapid oxidative coupling. The amine N-oxide TMAO is similarly effective in catalyzing the oxidative coupling of isoLG pyrroles. N-acetylcysteine abolishes the generation of pyrrole-pyrrole crosslinks. Instead pyrrole-cysteine adducts are produced. Two unified single-electron transfer mechanisms are proposed for crosslink and pyrrole-cysteine adduct formation from isoLG-pyrroles, as well as for their oxidation to lactams and hydroxylactams.

7.
Exp Eye Res ; 181: 325-345, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30296412

RESUMEN

Oxidative cleavage of docosahexaenoate (DHA) in retinal pigmented epithelial (RPE) cells produces 4-hydroxy-7-oxohept-5-enoic acid (HOHA) esters of 2-lysophosphatidylcholine (PC). HOHA-PC spontaneously releases a membrane-permeant HOHA lactone that modifies primary amino groups of proteins and ethanolamine phospholipids to produce 2-(ω-carboxyethyl)pyrrole (CEP) derivatives. CEPs have significant pathological relevance to age-related macular degeneration (AMD) including activation of CEP-specific T-cells leading to inflammatory M1 polarization of macrophages in the retina involved in "dry AMD" and TLR2-dependent induction of angiogenesis that characterizes "wet AMD". RPE cells accumulate DHA from shed rod photoreceptor outer segments through phagocytosis and from plasma lipoproteins secreted by the liver through active uptake from the choriocapillaris. As a cell model of light-induced oxidative damage of DHA phospholipids in RPE cells, ARPE-19 cells were supplemented with DHA, with or without the lipofuscin fluorophore A2E. In this model, light exposure, in the absence of A2E, promoted the generation HOHA lactone-glutathione (GSH) adducts, depletion of intracellular GSH and a competing generation of CEPs. While DHA-rich RPE cells exhibit an inherent proclivity toward light-induced oxidative damage, photosensitization by A2E nearly doubled the amount of lipid oxidation and expanded the spectral range of photosensitivity to longer wavelengths. Exposure of ARPE-19 cells to 1 µM HOHA lactone for 24 h induced massive (50%) loss of lysosomal membrane integrity and caused loss of mitochondrial membrane potential. Using senescence-associated ß-galactosidase (SA ß-gal) staining that detects lysosomal ß-galactosidase, we determined that exposure to HOHA lactone induces senescence in ARPE-19 cells. The present study shows that products of light-induced oxidative damage of DHA phospholipids in the absence of A2E can lead to RPE cell dysfunction. Therefore, their toxicity may be especially important in the early stages of AMD before RPE cells accumulate lipofuscin fluorophores.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Luz/efectos adversos , Degeneración Macular/metabolismo , Estrés Oxidativo/efectos de la radiación , Epitelio Pigmentado de la Retina/metabolismo , Células Cultivadas , Humanos , Peroxidación de Lípido , Lisosomas/metabolismo , Lisosomas/efectos de la radiación , Degeneración Macular/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos
8.
Chem Res Toxicol ; 31(8): 666-679, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29883119

RESUMEN

We previously discovered that oxidative cleavage of docosahexaenoate (DHA), which is especially abundant in the retinal photoreceptor rod outer segments and retinal pigmented endothelial (RPE) cells, generates 4-hydroxy-7-oxo-5-heptenoate (HOHA) lactone, and that HOHA lactone can enter RPE cells that metabolize it through conjugation with glutathione (GSH). The consequent depletion of GSH results in oxidative stress. We now find that HOHA lactone induces upregulation of the antioxidant transcription factor Nrf2 in ARPE-19 cells. This leads to expression of GCLM, HO1, and NQO1, three known Nrf2-responsive antioxidant genes. Besides this protective response, HOHA lactone also triggers a countervailing inflammatory activation of innate immunity. Evidence for a contribution of the complement pathway to age-related macular degeneration (AMD) pathology includes the presence of complement proteins in drusen and Bruch's membrane from AMD donor eyes, and the identification of genetic susceptibility loci for AMD in the complement pathway. In eye tissues from a mouse model of AMD, accumulation of complement protein in Bruch's membrane below the RPE suggested that the complement pathway targets this interface, where lesions occur in the RPE and photoreceptor rod outer segments. In animal models of AMD, intravenous injection of NaIO3 to induce oxidative injury selectively destroys the RPE and causes secretion of factor C3 from the RPE into areas directly adjacent to sites of RPE damage. However, a molecular-level link between oxidative injury and complement activation remained elusive. We now find that sub-micromolar concentrations of HOHA lactone foster expression of C3, CFB, and C5 in ARPE-19 cells and induce a countervailing upregulation of CD55, an inhibitor of C3 convertase production and complement cascade amplification. Ultimately, HOHA lactone causes membrane attack complex formation on the plasma membrane. Thus, HOHA lactone provides a molecular-level connection between free-radical-induced oxidative cleavage of DHA and activation of the complement pathway in AMD pathology.


Asunto(s)
Proteínas del Sistema Complemento/efectos de los fármacos , Lactonas/toxicidad , Epitelio Pigmentado de la Retina/efectos de los fármacos , Animales , Línea Celular , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Degeneración Macular/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
9.
Blood ; 132(1): 78-88, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29724896

RESUMEN

Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMß2 and αDß2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by ß2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMß2- and αDß2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMß2- and αDß2-mediated migration/retention of macrophages during inflammation.


Asunto(s)
Antígenos CD11/metabolismo , Antígenos CD18/metabolismo , Movimiento Celular , Matriz Extracelular/metabolismo , Cadenas alfa de Integrinas/metabolismo , Antígeno de Macrófago-1/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Animales , Antígenos CD11/genética , Antígenos CD18/genética , Matriz Extracelular/genética , Matriz Extracelular/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Cadenas alfa de Integrinas/genética , Antígeno de Macrófago-1/genética , Macrófagos/patología , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Ratones , Ratones Noqueados , Neutrófilos/patología , Oxidación-Reducción
10.
Magn Reson Med ; 79(1): 256-263, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28295552

RESUMEN

PURPOSE: The current study aimed to develop a three-dimensional (3D) dynamic oxygen-17 (17 O) MR imaging method with high temporal and spatial resolution to delineate the kinetics of 17 O water uptake and washout in the brains of mice with glioblastoma (GBM). METHODS: A 3D imaging method with a stack-of-stars golden-ratio-based radial sampling scheme was employed to acquire 17 O signal in vivo. A k-space-weighted image reconstruction method was used to improve the temporal resolution while preserving spatial resolution. Simulation studies were performed to validate the method. Using this method, the kinetics of 17 O water uptake and washout in the brains of mice with GBM were delineated after an intravenous bolus injection of 17 O water. RESULTS: The proposed 17 O imaging method achieved an effective temporal resolution of 7.56 s with a nominal voxel size of 5.625 µL in the mouse brain at 9.4 T. Reduced uptake and prolonged washout of 17 O water were observed in tumor tissue, suggesting compromised cerebral perfusion. CONCLUSION: This study demonstrated a promising dynamic 17 O imaging approach that can delineate 17 O water kinetics in vivo with high temporal and spatial resolution. It can also be used to image cerebral oxygen consumption rate in oxygen-17 inhalation studies. Magn Reson Med 79:256-263, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Isótopos de Oxígeno/química , Agua/química , Algoritmos , Animales , Simulación por Computador , Medios de Contraste , Aumento de la Imagen , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Cinética , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Desnudos , Fantasmas de Imagen
11.
J Nat Prod ; 80(2): 488-498, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28195470

RESUMEN

Levuglandins (LG)D2 and LGE2 are γ-ketoaldehyde levulinaldehyde derivatives with prostanoid side chains produced by spontaneous rearrangement of the endoperoxide intermediate PGH2 in the biosynthesis of prostaglandins. Covalent adduction of LGs with the amyloid peptide Aß1-42 promotes formation of the type of oligomers that have been associated with neurotoxicity and are a pathologic hallmark of Alzheimer's disease. Within 1 min of their generation during the production of PGH2 by cyclooxygenation of arachidonic acid, LGs are sequestered by covalent adduction to proteins. In view of this high proclivity for covalent adduction, it is understandable that free LGs have never been detected in vivo. Recently a catabolite, believed to be an oxidized derivative of LGD2 (ox-LGD2), a levulinic acid hydroxylactone with prostanoid side chains, was isolated from the red alga Gracilaria edulis and detected in mouse tissues and in the lysate of phorbol-12-myristate-13-acetate-treated THP-1 cells incubated with arachidonic acid. Such oxidative catabolism of LGD2 is remarkable because it must be outstandingly efficient to prevail over adduction with proteins and because it requires a unique dehydrogenation. We now report a concise total synthesis that confirms the molecular structure proposed for ox-LGD2. The synthesis also produces ox-LGE2, which readily undergoes allylic rearrangement to Δ6-ox-LGE2.


Asunto(s)
Gracilaria/química , Prostaglandina D2/análogos & derivados , Animales , Humanos , Ratones , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Ésteres del Forbol/farmacología , Prostaglandina D2/síntesis química , Prostaglandina D2/química , Proteínas/metabolismo
12.
Anticancer Agents Med Chem ; 17(6): 813-820, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27671308

RESUMEN

BACKGROUND: Angiogenesis is a fundamental process in the progression, invasion, and metastasis of tumors. Therapeutic drugs such as bevacizumab and ranibuzumab have thus been developed to inhibit vascular endothelial growth factor (VEFG)-promoted angiogenesis. While these anti-angiogenic drugs have been commonly used in the treatment of cancer, patients often develop significant resistance that limits the efficacy of anti-VEGF therapies to a short period of time. This is in part due to the fact that an independent pathway of angiogenesis exists, which is mediated by 2-(ω-carboxyethyl)pyrrole (CEP) in a TLR2 receptor-dependent manner that can compensate for inhibition of the VEGF-mediated pathway. AIMS: In this work, we evaluated a CEP antibody as a new tumor growth inhibitor that blocks CEP-induced angiogenesis. METHOD: We first evaluated the effectiveness of a CEP antibody as a monotherapy to impede tumor growth in two human tumor xenograft models. We then determined the synergistic effects of bevacizumab and CEP antibody in a combination therapy, which demonstrated that blocking of the CEP-mediated pathway significantly enhanced the anti-angiogenic efficacy of bevacizumab in tumor growth inhibition indicating that CEP antibody is a promising chemotherapeutic drug. To facilitate potential translational studies of CEP-antibody, we also conducted longitudinal imaging studies and identified that FMISO-PET is a non-invasive imaging tool that can be used to quantitatively monitor the anti-angiogenic effects of CEP-antibody in the clinical setting. RESULTS: That treatment with CEP antibody induces hypoxia in tumor tissue WHICH was indicated by 43% higher uptake of [18F]FMISO in CEP antibody-treated tumor xenografs than in the control PBS-treated littermates.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , División Celular/efectos de los fármacos , Neovascularización Patológica/prevención & control , Pirroles/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Factor A de Crecimiento Endotelial Vascular/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Chem Res Toxicol ; 30(1): 105-113, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27750413

RESUMEN

Our research on the roles of lipid oxidation in human disease is guided by chemical intuition. For example, we postulated that 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amines would be produced through covalent adduction of a γ-hydroxyalkenal generated, in turn, through oxidative fragmentation of docosahexaenoates. Our studies confirmed the natural occurrence of this chemistry, and the biological activities of these natural products and their extensive involvements in human physiology (wound healing) and pathology (age-related macular degeneration, autism, atherosclerosis, sickle cell disease, and tumor growth) continue to emerge. This perspective recounts these discoveries and proposes new frontiers where further developments are likely. Perhaps more significantly, it depicts an effective chemistry-based approach to the discovery of novel biochemistry.


Asunto(s)
Productos Biológicos/metabolismo , Pirroles/metabolismo , Animales , Humanos
14.
Chem Res Toxicol ; 29(12): 2125-2135, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27806561

RESUMEN

Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF expression. The new studies show that HOHA-lactone also participates in other angiogenic signaling pathways that include promoting the secretion of VEGF from retinal pigmented epithelial cells.


Asunto(s)
Lactonas/farmacología , Neovascularización Patológica/prevención & control , Neovascularización Fisiológica/efectos de los fármacos , Línea Celular , Glutatión/metabolismo , Humanos , Estrés Oxidativo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Receptor Toll-Like 2/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas
15.
Chem Res Toxicol ; 29(10): 1706-1719, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27618287

RESUMEN

Oxidative stress causes lipid-derived oxidative modification of biomolecules that has been implicated in many pathological states. Phospholipids containing polyunsaturated fatty acids are major targets of free radical-initiated oxidation. Phospholipids that incorporate docosahexaenoate (DHA) are highly enriched in important neural structures including the brain and retina, where DHA comprises 40% and 60% of total fatty acids, respectively. Oxidative fragmentation of 2-docosahexaenoyl-1-palmityl-sn-glycerophosphocholine generates esters of 4-hydroxy-7-oxohept-5-enoic acid (HOHA) and 4-keto-7-oxohept-5-enoic acid (KOHA) with 2-lysophosphatidylcholine, HOHA-PC, and KOHA-PC. Covalent HOHA adducts that incorporate the primary amino groups of proteins and ethanolamine phospholipids in carboxyethylpyrrole (CEP) derivatives were detected immunologically with anti-CEP antibodies in human tumors, retina, and blood. Now, we generated an anti-OHdiA antibody to test the hypothesis that KOHA adducts, which incorporate the primary amino groups of proteins or ethanolamine phospholipids in 4-oxo-heptanedioic (OHdiA) monoamide derivatives, are present in vivo. However, whereas the anti-CEP antibody is highly specific and does not cross-react with the OHdiA monoamide epitope, the anti-OHdiA monoamide antibody cross-reacted with CEP epitopes making it of little value as an analytical tool for OHdiA monoamides but suggesting the possibility that OHdiA monoamides would exhibit receptor-mediated biological activity similar to that of CEP. An LC-MS/MS method was developed that allows quantification of OHdiA derivatives in biological samples. We now find that KOHA-PC forms OHdiA monoamide adducts of proteins and ethanolamine phospholipids and that OHdiA-protein levels are significantly higher than OHdiA-ethanloamine phospholipid levels in blood from healthy human subjects, 0.45 µM and 0.18 µM, respectively (n = 3, and p = 0.027). OHdiA monoamide epitopes are angiogenic, causing TLR2-dependent adhesion and tube formation by human umbilical vein endothelial cells. OHdiA monoamide epitopes are only slightly less potent than CEP epitopes that contribute to the pathological angiogenesis of age-related macular degeneration and tumor growth.


Asunto(s)
Ácidos Dicarboxílicos/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Etanolamina/metabolismo , Ácidos Heptanoicos/metabolismo , Fosfolípidos/metabolismo , Albúmina Sérica/metabolismo , Animales , Bovinos , Ácidos Dicarboxílicos/química , Ácidos Docosahexaenoicos/química , Etanolamina/sangre , Etanolamina/química , Ácidos Heptanoicos/química , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Estructura Molecular , Oxidación-Reducción , Fosfolípidos/sangre , Fosfolípidos/química , Albúmina Sérica/química
16.
Chem Res Toxicol ; 29(10): 1628-1640, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27599534

RESUMEN

Isolevuglandins (isoLGs) are stereo and structurally isomeric γ-ketoaldehydes produced through free radical-induced oxidation of arachidonates. Some isoLG isomers are also generated through enzymatic cyclooxygenation. Post-translational modification of proteins by isoLGs is associated with loss-of-function, cross-linking and aggregation. We now report that a low level of modification by one or two molecules of isoLG has a profound effect on the activity of a multi subunit protease, calpain-1. Modification of one or two key lysyl residues apparently suffices to abolish catalytic activity. Covalent modification of calpain-1 led to intersubunit cross-linking. Hetero- and homo-oligomers of the catalytic and regulatory subunits of calpain-1 were detected by SDS-PAGE with Western blotting. N-Acetyl-glycyl-lysine methyl ester and ß-amyloid(11-17) peptide EVHHQKL were used as models for characterizing the cross-linking of protein lysyl residues resulting from adduction of iso[4]LGE2. Aminal, bispyrrole, and trispyrrole cross-links of these two peptides were identified and fully characterized by mass spectrometry. Aminal and bispyrrole dimers were both detected. Furthermore, a complex mixture of derivatives of the bispyrrole cross-link containing one or more additional atoms of oxygen was found. Interesting differences are evident in the predominant cross-link type generated in the reaction of iso[4]LGE2 with these peptides. More aminal cross-links versus bispyrrole are formed during the reaction of the dipeptide with iso[4]LGE2. In contrast, more bispyrrole versus aminal cross-links are formed during the reaction of EVHHQKL with iso[4]LGE2. It is tempting to speculate that the EVHHQKL peptide-pyrrole modification forms noncovalent aggregates that favor the production of covalent bispyrrole cross-links because ß-amyloid(11-17) tends to spontaneously oligomerize.


Asunto(s)
Calpaína/química , Reactivos de Enlaces Cruzados/química , Ácidos Grasos Insaturados/química , Animales , Calpaína/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Ácidos Grasos Insaturados/metabolismo , Humanos , Estructura Molecular
17.
Chem Res Toxicol ; 29(7): 1198-210, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27355557

RESUMEN

4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 µM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth.


Asunto(s)
Lactonas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Línea Celular , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Glutatión/metabolismo , Humanos , Espectrometría de Masas , Epitelio Pigmentado de la Retina/citología
18.
Chem Res Toxicol ; 29(7): 1187-97, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27341308

RESUMEN

γ-Hydroxy-α,ß-unsaturated aldehydes, generated by oxidative damage of polyunsaturated phospholipids, form pyrrole derivatives that incorporate the ethanolamine phospholipid (EP) amino group such as 2-pentylpyrrole (PP)-EP and 2-(ω-carboxyalkyl)pyrrole (CAP)-EP derivatives: 2-(ω-carboxyethyl)pyrrole (CEP)-EP, 2-(ω-carboxypropyl)pyrrole (CPP)-EP, and 2-(ω-carboxyheptyl)pyrrole (CHP)-EP. Because EPs occur in vivo in various forms, a complex mixture of pyrrole-modified EPs with different molecular weights is expected to be generated. To provide a sensitive index of oxidative stress, all of the differences in mass related to the glycerophospholipid moieties were removed by releasing a single CAP-ethanolamine (ETN) or PP-ETN from each mixture by treatment with phospholipase D. Accurate quantization was achieved using the corresponding ethanolamine-d4 pyrroles as internal standards. The product mixture obtained by phospholipolysis of total blood phospholipids from sickle cell disease (SCD) patients was analyzed by LC-MS/MS. The method was applied to measure CAP-EP and PP-EP levels in blood plasma from clinical monitoring of SCD patients. We found uniformly elevated blood levels of CEP-EP (63.9 ± 9.7 nM) similar to mean levels in blood from age-related macular degeneration (AMD) patients (56.3 ± 37.1 nM), and 2-fold lower levels (27.6 ± 3.6 nM, n = 5) were detected in plasma from SCD patients hospitalized to treat a sickle cell crisis, although mean levels remain higher than those (12.1 ± 10.5 nM) detected in blood from healthy controls. Plasma levels of CPP-EPs from SCD clinic patients were 4-fold higher than those of SCD patients hospitalized to treat a sickle cell crisis (45.1 ± 10.9 nM, n = 5 versus 10.9 ± 3.4 nM, n = 6; p < 0.002). PP-EP concentration in plasma from SCD clinic patients is nearly 4.8-fold higher than its level in plasma samples from SCD patients hospitalized to treat a sickle cell crisis (7.06 ± 4.05 vs 1.48 ± 0.92 nM; p < 0.05). Because CAP-EPs promote angiogenesis and platelet activation, the elevated levels present in SCD blood can contribute to the hypercoaguability and vaso-occlusive events that are critical pathophysiologic features of SCD.


Asunto(s)
Anemia de Células Falciformes/sangre , Fosfatidiletanolaminas/sangre , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Espectrometría de Masas en Tándem
19.
Blood ; 127(21): 2618-29, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27015965

RESUMEN

A prothrombotic state and increased platelet reactivity are common in dyslipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products, including hydroxy-ω-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid, can also be modified by hydroxy-ω-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PEs) are present in the plasma of hyperlipidemic ApoE(-/-) mice. CAP-PEs directly bind to TLR2 and induces platelet integrin αIIbß3 activation and P-selectin expression in a Toll-like receptor 2 (TLR2)-dependent manner. Platelet activation by CAP-PEs includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of tumor necrosis factor receptor-associated factor 6. This in turn activates the Src family kinases, spleen tyrosine kinase and PLCγ2, and platelet integrins. Murine intravital thrombosis studies demonstrated that CAP-PEs accelerate thrombosis in TLR2-dependent manner and that TLR2 contributes to accelerate thrombosis in mice in the settings of hyperlipidemia. Our study identified the novel end-products of lipid peroxidation, accumulating in circulation in hyperlipidemia and inducing platelet activation by promoting cross-talk between innate immunity and integrin activation signaling pathways.


Asunto(s)
Apolipoproteínas E/deficiencia , Plaquetas/metabolismo , Hiperlipidemias/metabolismo , Fosfatidiletanolaminas/metabolismo , Activación Plaquetaria , Trombosis/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Hiperlipidemias/genética , Hiperlipidemias/patología , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosfatidiletanolaminas/genética , Fosforilación/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Trombosis/genética , Trombosis/patología , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/genética
20.
Circ Res ; 117(4): 321-32, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25966710

RESUMEN

RATIONALE: Oxidative stress is an important contributing factor in several human pathologies ranging from atherosclerosis to cancer progression; however, the mechanisms underlying tissue protection from oxidation products are poorly understood. Oxidation of membrane phospholipids, containing the polyunsaturated fatty acid docosahexaenoic acid, results in the accumulation of an end product, 2-(ω-carboxyethyl)pyrrole (CEP), which was shown to have proangiogenic and proinflammatory functions. Although CEP is continuously accumulated during chronic processes, such as tumor progression and atherosclerosis, its level during wound healing return to normal when the wound is healed, suggesting the existence of a specific clearance mechanism. OBJECTIVE: To identify the cellular and molecular mechanism for CEP clearance. METHODS AND RESULTS: Here, we show that macrophages are able to bind, scavenge, and metabolize carboxyethylpyrrole derivatives of proteins but not structurally similar ethylpyrrole derivatives, demonstrating the high specificity of the process. F4/80(hi) and M2-skewed macrophages are much more efficient at CEP binding and scavenging compared with F4/80(lo) and M1-skewed macrophages. Depletion of macrophages leads to increased CEP accumulation in vivo. CEP binding and clearance are dependent on 2 receptors expressed by macrophages, CD36 and toll-like receptor 2. Although knockout of each individual receptor results in diminished CEP clearance, the lack of both receptors almost completely abrogates macrophages' ability to scavenge CEP derivatives of proteins. CONCLUSIONS: Our study demonstrates the mechanisms of recognition, scavenging, and clearance of pathophysiologically active products of lipid oxidation in vivo, thereby contributing to tissue protection against products of oxidative stress.


Asunto(s)
Antígenos CD36/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneales/metabolismo , Estrés Oxidativo , Pirroles/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Antígenos CD36/deficiencia , Antígenos CD36/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Macrófagos Peritoneales/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Fenotipo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Transfección , Carga Tumoral , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...