Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Pathol ; : 107660, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821230

RESUMEN

Hamartoma of Mature Cardiac Myocytes (HMCM) is an extremely rare cardiac tumor characterized by benign growth of differentiated mature striated cardiac myocytes, and usually involves the ventricular myocardium. We describe the case of a 15-year-old female who presented with a short history of atrial fibrillation and a polypoid epicardial tumor that was attached to the interatrial groove by a short pedicle. The resected specimen showed features consistent with HMCM. Although these tumors are not associated with any known molecular or cytogenetic abnormalities, we identified fusions transcripts along with complex copy number anomalies of chromosome 7.

2.
Cancers (Basel) ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730688

RESUMEN

Neuroblastoma presents with two patterns of disease: locoregional or systemic. The poor prognostic risk factors of locoregional neuroblastoma (LR-NB) include age, MYCN or MDM2-CDK4 amplification, 11q, histology, diploidy with ALK or TERT mutations, and ATRX aberrations. Anti-GD2 immunotherapy has significantly improved the outcome of high-risk (HR) NB and is mostly effective against osteomedullary minimal residual disease (MRD), but less so against soft tissue disease. The question is whether adding anti-GD2 monoclonal antibodies (mAbs) benefits patients with HR-NB compounded by only soft tissue. We reviewed 31 patients treated at SJD for HR-NB with no osteomedullary involvement at diagnosis. All tumors had molecular genetic features of HR-NB. The outcome after first-line treatment showed 25 (80.6%) patients achieving CR. Thirteen patients remain in continued CR, median follow-up 3.9 years. We analyzed whether adding anti-GD2 immunotherapy to first-line treatment had any prognostic significance. The EFS analysis using Cox models showed a HR of 0.20, p = 0.0054, and an 80% decrease in the risk of relapse in patients treated with anti-GD2 immunotherapy in the first line. Neither EFS nor OS were significantly different by CR status after first-line treatment. In conclusion, adding treatment with anti-GD2 mAbs at the stage of MRD helps prevent relapse that unequivocally portends poor survival.

3.
iScience ; 26(9): 107598, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664618

RESUMEN

Molecular classification of medulloblastoma is critical for the treatment of this brain tumor. Array-based DNA methylation profiling has emerged as a powerful approach for brain tumor classification. However, this technology is currently not widely available. We present a machine-learning decision support system (DSS) that enables the classification of the principal molecular groups-WNT, SHH, and non-WNT/non-SHH-directly from quantitative PCR (qPCR) data. We propose a framework where the developed DSS appears as a user-friendly web-application-EpiGe-App-that enables automated interpretation of qPCR methylation data and subsequent molecular group prediction. The basis of our classification strategy is a previously validated six-cytosine signature with subgroup-specific methylation profiles. This reduced set of markers enabled us to develop a methyl-genotyping assay capable of determining the methylation status of cytosines using qPCR instruments. This study provides a comprehensive approach for rapid classification of clinically relevant medulloblastoma groups, using readily accessible equipment and an easy-to-use web-application.t.

4.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174002

RESUMEN

Naxitamab is an anti-GD2 antibody approved for the treatment of relapsed/refractory HR-NB. We report the survival, safety, and relapse pattern of a unique set of HR-NB patients consolidated with naxitamab after having achieved first CR. Eighty-two patients were treated with 5 cycles of GM-CSF for 5 days at 250 µg/m2/day (-4 to 0), followed by GM-CSF for 5 days at 500 µg/m2/day (1-5) and naxitamab at 3 mg/kg/day (1, 3, 5), on an outpatient basis. All patients but one were older than 18 months at diagnosis and had stage M; 21 (25.6%) pts had MYCN-amplified (A) NB; and 12 (14.6%) detectable MRD in the BM. Eleven (13.4%) pts had received high-dose chemotherapy and ASCT and 26 (31.7%) radiotherapy before immunotherapy. With a median follow-up of 37.4 months, 31 (37.8%) pts have relapsed. The pattern of relapse was predominantly (77.4%) an isolated organ. Five-year EFS and OS were 57.9% (71.4% for MYCN A) 95% CI = (47.2, 70.9%); and 78.6% (81% for MYCN A) 95% CI = (68.7%, 89.8%), respectively. EFS showed significant differences for patients having received ASCT (p = 0.037) and pre-immunotherapy MRD (p = 0.0011). Cox models showed only MRD as a predictor of EFS. In conclusion, consolidation with naxitamab resulted in reassuring survival rates for HR-NB patients after end-induction CR.

5.
BMC Cancer ; 22(1): 669, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715791

RESUMEN

BACKGROUND: The bone marrow (BM) is the most common site of dissemination in patients with aggressive, metastatic neuroblastoma (NB). However, the molecular mechanisms underlying the aggressive behavior of NB cells in the BM niche are still greatly unknown. In the present study, we explored biological mechanisms that play a critical role in NB cell survival and progression in the BM and investigated potential therapeutic targets. METHODS: Patient-derived bone marrow (BM) primary cultures were generated using fresh BM aspirates obtained from NB patients. NB cell lines were cultured in the presence of BM conditioned media containing cell-secreted factors, and under low oxygen levels (1% O2) to mimic specific features of the BM microenvironment of high-risk NB patients. The BM niche was explored using cytokine profiling assays, cell migration-invasion and viability assays, flow cytometry and analysis of RNA-sequencing data. Selective pharmacological inhibition of factors identified as potential mediators of NB progression within the BM niche was performed in vitro and in vivo. RESULTS: We identified macrophage migration inhibitory factor (MIF) as a key inflammatory cytokine involved in BM infiltration. Cytokine profiling and RNA-sequencing data analysis revealed NB cells as the main source of MIF in the BM, suggesting a potential role of MIF in tumor invasion. Exposure of NB cells to BM-conditions increased NB cell-surface expression of the MIF receptor CXCR4, which was associated with increased cell viability, enhanced migration-invasion, and activation of PI3K/AKT and MAPK/ERK signaling pathways. Moreover, subcutaneous co-injection of NB and BM cells enhanced tumor engraftment in mice. MIF inhibition with 4-IPP impaired in vitro NB aggressiveness, and improved drug response while delayed NB growth, improving survival of the NB xenograft model. CONCLUSIONS: Our findings suggest that BM infiltration by NB cells may be mediated, in part, by MIF-CXCR4 signaling. We demonstrate the antitumor efficacy of MIF targeting in vitro and in vivo that could represent a novel therapeutic target for patients with disseminated high-risk NB.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Neuroblastoma , Animales , Médula Ósea/patología , Células de la Médula Ósea/metabolismo , Resistencia a Medicamentos , Humanos , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Procesos Neoplásicos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Microambiente Tumoral
6.
Childs Nerv Syst ; 37(8): 2511-2520, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33864514

RESUMEN

PURPOSE: Pediatric low-grade gliomas are the most frequent brain tumors in children. The standard approach for symptomatic unresectable tumors is chemotherapy. Recently, key molecular alterations/pathways have been identified and targeted drugs developed and tested in clinical trials. We describe our institutional experience with MAPK pathway targeted therapy. METHODS: We retrospectively reviewed the medical reports of 23 patients diagnosed with PLGG and treated with either trametinib or dabrafenib at Hospital Sant Joan de Dèu (Barcelona, Spain). Patients with neurofibromatosis were excluded. Objective response rate (ORR) and disease control rate (DCR) were determined using the Response Assessment in Pediatric Neuro-Oncology criteria in low-grade glioma. ORR was defined as the proportion of patients with the best overall response including complete remission (CR) or partial remission (PR). DCR was the sum of the CR, PR, and stable disease (SD) rates. RESULTS: ORR with trametinib was 0% (95% CI, 0%-23.2%) and DCR was 78.6% (95% CI, 49.2%-95.3%). Eleven patients had SD and three patients presented PD. ORR with dabrafenib was 41.7% (95% CI, 16.5%-71.4%), including four CR and one patient with PR. DCR with dabrafenib was 100% (95% CI, 73.5%-100%); there were seven SD and none PD. Treatment was well tolerated. Only three patients, on trametinib, presented grade 3 adverse effects: leukocytoclastic vasculitis, cheilitis, and bone infection. CONCLUSIONS: Our experience adds to the growing data about the efficacy and tolerability of targeted therapy in patients with PLGG. When present, toxicity is mainly mild-moderate and transient. Ongoing prospective clinical trials are trying to address if its use should be advanced to first-line therapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamiento farmacológico , Niño , Glioma/tratamiento farmacológico , Humanos , Estudios Prospectivos , Estudios Retrospectivos , España
7.
J Pathol Clin Res ; 7(4): 338-349, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33837665

RESUMEN

The goals of this work were to identify factors favoring patient-derived xenograft (PDX) engraftment and study the association between PDX engraftment and prognosis in pediatric patients with Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma. We used immunodeficient mice to establish 30 subcutaneous PDX from patient tumor biopsies, with a successful engraftment rate of 44%. Age greater than 12 years and relapsed disease were patient factors associated with higher engraftment rate. Tumor type and biopsy location did not associate with engraftment. PDX models retained histology markers and most chromosomal aberrations of patient samples during successive passages in mice. Model treatment with irinotecan resulted in significant activity in 20 of the PDXs and replicated the response of rhabdomyosarcoma patients. Successive generations of PDXs responded similarly to irinotecan, demonstrating functional stability of these models. Importantly, out of 68 tumor samples from 51 patients with a median follow-up of 21.2 months, PDX engraftment from newly diagnosed patients was a prognostic factor significantly associated with poor outcome (p = 0.040). This association was not significant for relapsed patients. In the subgroup of patients with newly diagnosed Ewing sarcoma classified as standard risk, we found higher risk of relapse or refractory disease associated with those samples that produced stable PDX models (p = 0.0357). Overall, our study shows that PDX engraftment predicts worse outcome in newly diagnosed pediatric sarcoma patients.


Asunto(s)
Pronóstico , Sarcoma de Ewing/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Adolescente , Animales , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Xenoinjertos/efectos de los fármacos , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Masculino , Ratones , Osteosarcoma/tratamiento farmacológico , Rabdomiosarcoma/tratamiento farmacológico , Sarcoma/tratamiento farmacológico , Resultado del Tratamiento
9.
Front Oncol ; 8: 127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755954

RESUMEN

BACKGROUND AND OBJECTIVE: Diffuse intrinsic pontine glioma (DIPG) is a lethal brainstem tumor in children. Dendritic cells (DCs) have T-cell stimulatory capacity and, therefore, potential antitumor activity for disease control. DCs vaccines have been shown to reactivate tumor-specific T cells in both clinical and preclinical settings. We designed a phase Ib immunotherapy (IT) clinical trial with the use of autologous dendritic cells (ADCs) pulsed with an allogeneic tumors cell-lines lysate in patients with newly diagnosed DIPG after irradiation (radiation therapy). METHODS: Nine patients with newly diagnosed DIPG met enrollment criteria. Autologous dendritic cell vaccines (ADCV) were prepared from monocytes obtained by leukapheresis. Five ADCV doses were administered intradermally during induction phase. In the absence of tumor progression, patients received three boosts of tumor lysate every 3 months during the maintenance phase. RESULTS: Vaccine fabrication was feasible in all patients included in the study. Non-specific KLH (9/9 patients) and specific (8/9 patients) antitumor response was identified by immunologic studies in peripheral blood mononuclear cells (PBMC). Immunological responses were also confirmed in the T lymphocytes isolated from the cerebrospinal fluid (CSF) of two patients. Vaccine administration resulted safe in all patients treated with this schema. CONCLUSION: These preliminary results demonstrate that ADCV preparation is feasible, safe, and generate a DIPG-specific immune response detected in PBMC and CSF. This strategy shows a promising backbone for future schemas of combination IT.

10.
Cell Cycle ; 11(19): 3627-37, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22935704

RESUMEN

Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38ß isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.


Asunto(s)
Replicación del ADN , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Animales , Afidicolina/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Ciclina B1/antagonistas & inhibidores , Ciclina B1/metabolismo , ADN/biosíntesis , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Hidroxiurea/farmacología , Cinética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 6/metabolismo , Ratones , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo
11.
Cancer Res ; 67(24): 11648-56, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18089794

RESUMEN

Cell cycle checkpoint abrogation, especially the inhibition of Chk1 in combination with DNA-damaging treatments, has been proposed as a promising way of sensitizing cancer cells. However, less is known about the possibility to selectively affect tumor cells when they are treated with agents that block DNA synthesis in combination with replication checkpoint inhibitors. Here, we present clear insights in the different responses of tumor and non-transformed cells to the inhibition of DNA replication with hydroxyurea in combination with checkpoint abrogation via inhibition of Ataxia telangiectasia-mutated- (ATM) and Rad3-related/ATM (ATR/ATM) and Chk1 kinases. Interestingly, we find that non-transformed cell lines activate ATR/ATM- and Chk1-independent pathways in response to replication inhibition to prevent mitotic entry with unreplicated DNA. In contrast, tumor cell lines such as HCT116 and HeLa cells rely entirely on Chk1 activity for a proper response to replication inhibitors. Our results show that p38 is activated in response to hydroxyurea treatment and collaborates with Chk1 to prevent mitotic entry in non-transformed cell lines by maintaining cyclin B1/Cdk1 complexes inactive. Furthermore, DNA replication arrest down-regulates cyclin B1 promoter activity in non-transformed cells, but not in tumor cells in a Chk1- and p38-independent way. Thus, our data show that non-transformed cells present a more robust DNA replication checkpoint response compared with tumor cells that involves activation of the p38 pathway. We show that some of these responses to replication block can be lost in tumor cells, causing a defective checkpoint and providing a rationale for tumor-selective effects of combined therapies.


Asunto(s)
Bromodesoxiuridina/farmacología , División Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Fase S/efectos de los fármacos , Células 3T3/citología , Células 3T3/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Células HeLa , Humanos , Riñón , Ratones , ARN Interferente Pequeño/genética , Ratas
12.
J Bacteriol ; 188(7): 2726-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16547063

RESUMEN

Antibiotics that interfere with DNA replication and cell viability activate the SOS response. In Staphylococcus aureus, the antibiotic-induced SOS response promotes replication and high-frequency horizontal transfer of pathogenicity island-encoded virulence factors. Here we report that beta-lactams induce a bona fide SOS response in S. aureus, characterized by the activation of the RecA and LexA proteins, the two master regulators of the SOS response. Moreover, we show that beta-lactams are capable of triggering staphylococcal prophage induction in S. aureus lysogens. Consequently, and as previously described for SOS induction by commonly used fluoroquinolone antibiotics, beta-lactam-mediated phage induction also resulted in replication and high-frequency transfer of the staphylococcal pathogenicity islands, showing that such antibiotics may have the unintended consequence of promoting the spread of bacterial virulence factors.


Asunto(s)
Antibacterianos/farmacología , Transferencia de Gen Horizontal/efectos de los fármacos , Respuesta SOS en Genética/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Factores de Virulencia/metabolismo , beta-Lactamas/farmacología , Ampicilina/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Penicilinas/farmacología , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Factores de Virulencia/genética
13.
J Bacteriol ; 187(15): 5367-75, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16030231

RESUMEN

The here-reported identification of the LexA-binding sequence of Bdellovibrio bacteriovorus, a bacterial predator belonging to the delta-Proteobacteria, has made possible a detailed study of its LexA regulatory network. Surprisingly, only the lexA gene and a multiple gene cassette including dinP and dnaE homologues are regulated by the LexA protein in this bacterium. In vivo expression analyses have confirmed that this gene cassette indeed forms a polycistronic unit that, like the lexA gene, is DNA damage inducible in B. bacteriovorus. Conversely, genes such as recA, uvrA, ruvCAB, and ssb, which constitute the canonical core of the Proteobacteria SOS system, are not repressed by the LexA protein in this organism, hinting at a persistent selective pressure to maintain both the lexA gene and its regulation on the reported multiple gene cassette. In turn, in vitro experiments show that the B. bacteriovorus LexA-binding sequence is not recognized by other delta-Proteobacteria LexA proteins but binds to the cyanobacterial LexA repressor. This places B. bacteriovorus LexA at the base of the delta-Proteobacteria LexA family, revealing a high degree of conservation in the LexA regulatory sequence prior to the diversification and specialization seen in deeper groups of the Proteobacteria phylum.


Asunto(s)
Proteínas Bacterianas/genética , Bdellovibrio/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/genética , Respuesta SOS en Genética/genética , Serina Endopeptidasas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Unión Proteica , Proteínas Represoras/metabolismo , Serina Endopeptidasas/metabolismo
14.
Nucleic Acids Res ; 32(22): 6617-26, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15604457

RESUMEN

The LexA regulon encompasses an ensemble of genes involved in preserving cell viability under massive DNA damage and is present in most bacterial phyla. Up to date, however, the scope of this network had only been assessed in the Gamma Proteobacteria. Here, we report the structure of the LexA regulon in the Alpha Proteobacteria, using a combined approach that makes use of in vitro and in vivo techniques to assist and validate the comparative genomics in silico methodology. This leads to the first experimentally validated description of the LexA regulon in the Alpha Proteobacteria, and comparison of regulon core structures in both classes suggests that a least common multiple set of genes (recA, ssb, uvrA and ruvCAB) might be a defining property of the Proteobacteria LexA network.


Asunto(s)
Alphaproteobacteria/genética , Proteínas Bacterianas/metabolismo , Gammaproteobacteria/genética , Genómica/métodos , Regulón , Serina Endopeptidasas/metabolismo , Algoritmos , Secuencia de Bases , Sitios de Unión , Biología Computacional , Secuencia de Consenso , Secuencias Reguladoras de Ácidos Nucleicos , Respuesta SOS en Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...