Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Minerva Anestesiol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949458

RESUMEN

Brain dysfunction is a frequent complication of sepsis. Most likely, sepsis-associated brain dysfunction (SABD) results from the interaction between multiple factors: neurodegeneration due to microglial activation, altered neurotransmission, neuroinflammation and impairment of cerebral macro- and microcirculation. Altered brain perfusion might results from several mechanism: global or regional alterations in cerebral blood flow (CBF); reduced cerebral perfusion pressure - which is the driving force propelling blood through cerebral blood vessels - due to systemic hypotension; global or regional vasoconstriction; dysfunction of the intrinsic regulatory mechanisms of CBF, such as cerebral autoregulation and cerebrovascular reactivity; endothelial and blood-brain barrier dysfunction; autonomic nervous system dysfunction and metabolic uncoupling. Disorders of brain perfusion and CBF regulation are frequently observed in humans with sepsis, and intracranial hemodynamics monitoring can potentially be useful in clinical management of septic patients. The aim of this review is to provide an update of the current knowledge on alterations in brain hemodynamics associated with sepsis, along with physiological and methodological considerations intended to help the reader navigate the diverse results from published literature and a practical guide to apply non-invasive intracranial hemodynamics monitoring to septic patients in clinical practice.

2.
J Anesth Analg Crit Care ; 4(1): 43, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978080

RESUMEN

BACKGROUND: Anemia is common among hospitalized critically ill and surgical oncological patients. The rising incidence of cancer and aggressive treatments has increased the demand for blood products, further strained by a dwindling donor pool. The normobaric oxygen paradox (NOP) has emerged as a potential avenue to increase EPO levels. While some studies support its efficacy, research remains limited in clinical settings. This study aims to assess the effectiveness of a NOP protocol in stimulating erythropoiesis, as measured by changes in reticulocyte counts, in cancer patients undergoing abdominal surgeries. METHODS: This is a post hoc analysis of a prospective, single-center, controlled, randomized study. A total of 49 patients undergoing abdominal surgery were analyzed at the Institut Jules Bordet. Adult patients admitted to the intensive care unit (ICU) for at least 24 h were enrolled, excluding those with severe renal insufficiency or who received transfusions during the study period. Participants were randomized into two groups: a normobaric oxygen paradox (OXY) group who received 60% oxygen for 2 h on days 1, 3, and 5 post-surgery and a control (CTR) group who received standard care. Data on baseline characteristics, surgical details, and laboratory parameters were collected. Statistical analysis included descriptive statistics, chi-square tests, t-tests, Mann-Whitney tests, and linear and logistic regression. RESULTS: The final analysis included 33 patients (median age 62 [IQR 58-66], 28 (84.8%) males, with no withdrawals or deaths during the study period. No significant differences were observed in baseline surgical characteristics or perioperative outcomes between the two groups. In the OXY group (n = 16), there was a significant rise (p = 0.0237) in the percentage of reticulocyte levels in comparison to the CTR group (n = 17), with median values of 36.1% (IQR 20.3-57.8) versus - 5.3% (IQR - 19.2-57.8), respectively. The increases in hemoglobin and hematocrit levels did not significantly differ between the groups when compared to their baselines' values. CONCLUSIONS: This study provides preliminary evidence supporting the potential of normobaric oxygen therapy in stimulating erythropoiesis in cancer patients undergoing abdominal surgeries. While the OXY group resulted in increased reticulocyte counts, further research with larger sample sizes and multi-center trials is warranted to confirm these findings. TRIAL REGISTRATION: The study was retrospectively registered under NCT number 06321874 on The 10th of April 2024.

3.
Cells ; 13(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38727320

RESUMEN

Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.


Asunto(s)
Paro Cardíaco , Cuerpos Cetónicos , Cuerpos Cetónicos/metabolismo , Humanos , Paro Cardíaco/metabolismo , Animales , Dieta Cetogénica
4.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474253

RESUMEN

The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.


Asunto(s)
Lesiones Encefálicas , Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Oxígeno/farmacología , Nitrógeno/farmacología , Estrés Oxidativo , Antioxidantes/farmacología , Especies de Nitrógeno Reactivo/metabolismo , Niacinamida/farmacología , Lesiones Encefálicas/tratamiento farmacológico
5.
Brain Sci ; 14(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38391692

RESUMEN

Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.

6.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397071

RESUMEN

The "normobaric oxygen paradox" (NOP) describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive transcription factors. We have previously characterized the time trend of oxygen-sensitive transcription factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140% oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activation in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin (PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia, MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2), the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular responses, according to its partial pressure and time of administration, and further emphasizes the importance of targeting the use of oxygen to activate specific effects on the whole organism.


Asunto(s)
Hiperoxia , Oxígeno , Humanos , Oxígeno/farmacología , Oxígeno/metabolismo , Hiperoxia/metabolismo , Productos Avanzados de Oxidación de Proteínas/metabolismo , Proyectos Piloto , Biogénesis de Organelos , Leucocitos Mononucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hipoxia , Estrés Oxidativo/fisiología , Productos Finales de Glicación Avanzada/metabolismo
7.
Eur J Neurol ; 31(4): e16208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270448

RESUMEN

BACKGROUND AND PURPOSE: Depth electroencephalography (dEEG) is an emerging neuromonitoring technology in acute brain injury (ABI). We aimed to explore the concordances between electrophysiological activities on dEEG and on scalp EEG (scEEG) in ABI patients. METHODS: Consecutive ABI patients who received dEEG monitoring between 2018 and 2022 were included. Background, sporadic epileptiform discharges, rhythmic and periodic patterns (RPPs), electrographic seizures, brief potentially ictal rhythmic discharges, ictal-interictal continuum (IIC) patterns, and hourly RPP burden on dEEG and scEEG were compared. RESULTS: Sixty-one ABI patients with a median dEEG monitoring duration of 114 h were included. dEEG significantly showed less continuous background (75% vs. 90%, p = 0.03), higher background amplitude (p < 0.001), more frequent rhythmic spike-and-waves (16% vs. 3%, p = 0.03), more IIC patterns (39% vs. 21%, p = 0.03), and greater hourly RPP burden (2430 vs. 1090 s/h, p = 0.01), when compared to scEEG. Among five patients with seizures on scEEG, one patient had concomitant seizures on dEEG, one had periodic discharges (not concomitant) on dEEG, and three had no RPPs on dEEG. Features and temporal occurrence of electrophysiological activities observed on dEEG and scEEG are not strongly associated. Patients with seizures and IIC patterns on dEEG seemed to have a higher rate of poor outcomes at discharge than patients without these patterns on dEEG (42% vs. 25%, p = 0.37). CONCLUSIONS: dEEG can detect abnormal electrophysiological activities that may not be seen on scEEG and can be used as a complement in the neuromonitoring of ABI patients.


Asunto(s)
Lesiones Encefálicas , Cuero Cabelludo , Humanos , Pronóstico , Electroencefalografía , Convulsiones
8.
Ann Med Surg (Lond) ; 86(1): 539-544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222739

RESUMEN

Introduction: Acute liver failure (ALF) is a rapidly progressing, life-threatening syndrome characterized by liver-related coagulopathy and hepatic encephalopathy (HE). Given that higher HE grades correlate with poorer outcomes, clinical management of ALF necessitates close neurological monitoring. The primary objective of this case report is to highlight the diagnostic value of utilizing multimodal neuromonitoring (MNM) in a patient suffering from ALF. Case report: A 56-year-old male patient with a history of chronic alcoholism, without prior chronic liver disease, and recent acetaminophen use was admitted to the hospital due to fatigue and presenting with a mild flapping tremor. The primary hypothesis was an acute hepatic injury caused by acetaminophen intoxication. In the following hours, the patient's condition deteriorated, accompanied by neurological decline and rising ammonia levels. The patient's neurological status was closely monitored using MNM. Bilaterally altered pupillary light reflex assessed by decreasing in the Neurological Pupil Index values, using automated pupillometry, initially suggested severe brain oedema. However, ultrasound measurements of the optic nerve sheath diameter showed normal values in both eyes, P2/P1 noninvasive intracranial pressure waveform assessment was within normal ranges and the cerebral computed tomography-scan revealed no signs of cerebral swelling. Increased middle cerebral artery velocities measured by Transcranial Doppler and the initiation of electroencephalography monitoring yielded the presence of status epilepticus. Discussion: The utilization of MNM facilitated a more comprehensive understanding of the mechanisms underlying the patient's clinical deterioration in the setting of HE. Nonetheless, future studies are needed to show feasibility and to yield valuable insights that can enhance the outcomes for patients with HE using such an approach. Given the absence of specific guidelines in this particular context, it is advisable for physicians to give further consideration to the incorporation of MNM in the management of unconscious patients with ALF.

9.
Neurocrit Care ; 40(2): 477-485, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37378852

RESUMEN

Traumatic brain injury (TBI) is a significant public health issue because of its increasing incidence and the substantial short-term and long-term burden it imposes. This burden includes high mortality rates, morbidity, and a significant impact on productivity and quality of life for survivors. During the management of TBI, extracranial complications commonly arise during the patient's stay in the intensive care unit. These complications can have an impact on both mortality and the neurological outcome of patients with TBI. Among these extracranial complications, cardiac injury is a relatively frequent occurrence, affecting approximately 25-35% of patients with TBI. The pathophysiology underlying cardiac injury in TBI involves the intricate interplay between the brain and the heart. Acute brain injury triggers a systemic inflammatory response and a surge of catecholamines, leading to the release of neurotransmitters and cytokines. These substances have detrimental effects on the brain and peripheral organs, creating a vicious cycle that exacerbates brain damage and cellular dysfunction. The most common manifestation of cardiac injury in TBI is corrected QT (QTc) prolongation and supraventricular arrhythmias, with a prevalence up to 5 to 10 times higher than in the general adult population. Other forms of cardiac injury, such as regional wall motion alteration, troponin elevation, myocardial stunning, or Takotsubo cardiomyopathy, have also been described. In this context, the use of ß-blockers has shown potential benefits by intervening in this maladaptive process. ß-blockers can limit the pathological effects on cardiac rhythm, blood circulation, and cerebral metabolism. They may also mitigate metabolic acidosis and potentially contribute to improved cerebral perfusion. However, further clinical studies are needed to elucidate the role of new therapeutic strategies in limiting cardiac dysfunction in patients with severe TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Adulto , Humanos , Calidad de Vida , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/terapia , Encéfalo , Corazón
10.
Neurocrit Care ; 40(2): 750-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37697127

RESUMEN

BACKGROUND: Cerebral hypoxia is a frequent cause of secondary brain damage in patients with acute brain injury. Although hypercapnia can increase intracranial pressure, it may have beneficial effects on tissue oxygenation. We aimed to assess the effects of hypercapnia on brain tissue oxygenation (PbtO2). METHODS: This single-center retrospective study (November 2014 to June 2022) included all patients admitted to the intensive care unit after acute brain injury who required multimodal monitoring, including PbtO2 monitoring, and who underwent induced moderate hypoventilation and hypercapnia according to the decision of the treating physician. Patients with imminent brain death were excluded. Responders to hypercapnia were defined as those with an increase of at least 20% in PbtO2 values when compared to their baseline levels. RESULTS: On a total of 163 eligible patients, we identified 23 (14%) patients who underwent moderate hypoventilation (arterial partial pressure of carbon dioxide [PaCO2] from 44 [42-45] to 50 [49-53] mm Hg; p < 0.001) during the study period at a median of 6 (4-10) days following intensive care unit admission; six patients had traumatic brain injury, and 17 had subarachnoid hemorrhage. A significant overall increase in median PbtO2 values from baseline (21 [19-26] to 24 [22-26] mm Hg; p = 0.02) was observed. Eight (35%) patients were considered as responders, with a median increase of 7 (from 4 to 11) mm Hg of PbtO2, whereas nonresponders showed no changes (from - 1 to 2 mm Hg of PbtO2). Because of the small sample size, no variable independently associated with PbtO2 response was identified. No correlation between changes in PaCO2 and in PbtO2 was observed. CONCLUSIONS: In this study, a heterogeneous response of PbtO2 to induced hypercapnia was observed but without any deleterious elevations of intracranial pressure.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Estudios Retrospectivos , Hipercapnia/complicaciones , Hipoventilación/complicaciones , Oxígeno , Encéfalo , Lesiones Encefálicas/terapia , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Presión Intracraneal/fisiología
11.
Neurol Sci ; 45(3): 1135-1144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37828386

RESUMEN

BACKGROUND: Delayed cerebral ischemia (DCI) is a preventable cause of poor neurological outcome in aneurysmal subarachnoid hemorrhage (aSAH). Advances in radiological methods, such as cerebral perfusion computed tomography (CTP), could help diagnose DCI earlier and potentially improve outcomes in aSAH. The objective of this study was to assess whether the use of CTP to diagnose DCI early could reduce the risk of infarction related to DCI. METHODS: Retrospective cohort study of patients in the intensive care unit of Erasme Hospital (Brussels, Belgium) between 2004 and 2021 with aSAH who developed DCI. Patients were classified as: "group 1" - DCI diagnosed based on clinical deterioration or "group 2" - DCI diagnosed using CTP. The primary outcome was the development of infarction unrelated to the initial bleeding or surgery. RESULTS: 211 aSAH patients were diagnosed with DCI during the study period: 139 (66%) in group 1 and 72 (34%) in group 2. In group 1, 109 (78%) patients developed a cerebral infarction, compared to 45 (63%) in group 2 (p = 0.02). The adjusted cumulative incidence of DCI over time was lower in group 2 than in group 1 [hazard ratio 0.65 (95% CI 0.48-0.94); p = 0.02]. The use of CTP to diagnose DCI was not independently associated with mortality or neurological outcome. CONCLUSIONS: The use of CTP to diagnose DCI might help reduce the risk of developing cerebral infarction after aSAH, although the impact of such an approach on patient outcomes needs to be further demonstrated.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Infarto Cerebral/etiología , Infarto Cerebral/complicaciones , Isquemia Encefálica/etiología , Isquemia Encefálica/complicaciones , Perfusión/efectos adversos
12.
Sci Rep ; 13(1): 16657, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789100

RESUMEN

Cerebral hypoxia is an important cause of secondary brain injury. Improving systemic oxygenation may increase brain tissue oxygenation (PbtO2). The effects of increased positive end-expiratory pressure (PEEP) on PbtO2 and intracranial pressure (ICP) needs to be further elucidated. This is a single center retrospective cohort study (2016-2021) conducted in a 34-bed Department of Intensive Care unit. All patients with acute brain injury under mechanical ventilation who were monitored with intracranial pressure and brain tissue oxygenation (PbtO2) catheters and underwent at least one PEEP increment were included in the study. Primary outcome was the rate of PbtO2 responders (increase in PbtO2 > 20% of baseline) after PEEP increase. ΔPEEP was defined as the difference between PEEP at 1 h and PEEP at baseline; similarly ΔPbtO2 was defined as the difference between PbtO2 at 1 h after PEEP incrementation and PbtO2 at baseline. We included 112 patients who underwent 295 episodes of PEEP increase. Overall, the median PEEP increased form 6 (IQR 5-8) to 10 (IQR 8-12) cmH2O (p = 0.001), the median PbtO2 increased from 21 (IQR 16-29) mmHg to 23 (IQR 18-30) mmHg (p = 0.001), while ICP remained unchanged [from 12 (7-18) mmHg to 12 (7-17) mmHg; p = 0.42]. Of 163 episode of PEEP increments with concomitant PbtO2 monitoring, 34 (21%) were PbtO2 responders. A lower baseline PbtO2 (OR 0.83 [0.73-0.96)]) was associated with the probability of being responder. ICP increased in 142/295 episodes of PEEP increments (58%); no baseline variable was able to identify this response. In PbtO2 responders there was a moderate positive correlation between ΔPbtO2 and ΔPEEP (r = 0.459 [95% CI 0.133-0.696]. The response in PbtO2 and ICP to PEEP elevations in brain injury patients is highly variable. Lower PbtO2 values at baseline could predict a significant increase in brain oxygenation after PEEP increase.


Asunto(s)
Lesiones Encefálicas , Presión Intracraneal , Humanos , Presión Intracraneal/fisiología , Estudios Retrospectivos , Lesiones Encefálicas/terapia , Lesiones Encefálicas/complicaciones , Encéfalo , Respiración con Presión Positiva , Oxígeno
14.
Panminerva Med ; 65(4): 461-466, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37535043

RESUMEN

BACKGROUND: The COVID-19 pandemic has had an unprecedent impact of everyday life with deleterious consequences on global health, economics, and society. Thus, accurate and timely information is critical for monitoring its spread and mitigating its impact. ChatGPT is a large language model chatbot with artificial intelligence, developed by OpenAI, that can provide both textual content and R code for predictive models. It may prove to be useful in analyzing and interpreting COVID-19-related data. METHODS: This paper explores the application of ChatGPT to the monitoring of the COVID-19 pandemic, presenting R code for predictive models and demonstrating the model's capabilities in sentiment analysis, information extraction, and predictive modelling. We used the prediction models suggested by ChatGPT to predict the daily number of COVID-19 deaths in Italy. The prediction accuracy of the models was compared using the following metrics: mean squared error (MSE), mean absolute deviation (MAD) and root mean squared error (RMSE). RESULTS: ChatGPT suggested three different predictive models, including ARIMA, Random Forest and Prophet. The ARIMA model outperformed the other two models in predicting the daily number of COVID-19 deaths in Italy, with lower MSE, MAD, and RMSE values as compared to the Random Forest and Prophet. CONCLUSIONS: This paper demonstrates the potential of ChatGPT as a valuable tool in the monitoring of the pandemic. By processing large amounts of data and providing relevant information, ChatGPT has the potential to provide accurate and timely insights, and support decision-making processes to mitigate the spread and impact of pandemics. The paper highlights the importance of exploring the capabilities of artificial intelligence in the management of public emergencies and provides a starting point for future research in this area.


Asunto(s)
Inteligencia Artificial , COVID-19 , Humanos , Pandemias , COVID-19/epidemiología , Inteligencia , Italia/epidemiología
16.
BMC Neurol ; 23(1): 228, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312033

RESUMEN

INTRODUCTION: Serum lactate dehydrogenase (LDH) levels are often elevated in cardiovascular diseases. Their prognostic role after subarachnoid hemorrhage (SAH) remains poorly evaluated. METHODS: This is a retrospective single-center study of patients with non-traumatic SAH admitted to the intensive care unit (ICU) of an University Hospital from 2007 to 2022. Exclusion criteria were pregnancy and incomplete medical records or follow-up data. Baseline information, clinical data, radiologic data, the occurrence of neurological complications as well as serum LDH levels during the first 14 days of ICU stay were collected. Unfavorable neurological outcome (UO) at 3 months was defined as a Glasgow Outcome Scale of 1-3. RESULTS: Five hundred and forty-seven patients were included; median serum LDH values on admission and the highest LDH values during the ICU stay were 192 [160-230] IU/L and 263 [202-351] IU/L, respectively. The highest LDH value was recorded after a median of 4 [2-10] days after ICU admission. LDH levels on admission were significantly higher in patients with UO. When compared with patients with favorable outcome (FO), patients with UO had higher serum LDH values over time. In the multivariate logistic regression model, the highest LDH value over the ICU stay (OR 1.004 [95% CI 1.002 - 1.006]) was independently associated with the occurrence of UO; the area under the receiving operator (AUROC) curve for the highest LDH value over the ICU stay showed a moderate accuracy to predict UO (AUC 0.76 [95% CI 0.72-0.80]; p < 0.001), with an optimal threshold of > 272 IU/L (69% sensitivity and 74% specificity). CONCLUSIONS: The results in this study suggest that high serum LDH levels are associated with the occurrence of UO in SAH patients. As a readily and available biomarker, serum LDH levels should be evaluated to help with the prognostication of SAH patients.


Asunto(s)
Enfermedades Cardiovasculares , Hemorragia Subaracnoidea , Femenino , Embarazo , Humanos , Hemorragia Subaracnoidea/complicaciones , Estudios Retrospectivos , Escala de Consecuencias de Glasgow , Hospitalización
18.
Eur Respir Rev ; 32(168)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37019458

RESUMEN

BACKGROUND: The effect of noninvasive respiratory support (NRS), including high-flow nasal oxygen, bi-level positive airway pressure and continuous positive airway pressure (noninvasive ventilation (NIV)), for preventing and treating post-extubation respiratory failure is still unclear. Our objective was to assess the effects of NRS on post-extubation respiratory failure, defined as re-intubation secondary to post-extubation respiratory failure (primary outcome). Secondary outcomes included the incidence of ventilator-associated pneumonia (VAP), discomfort, intensive care unit (ICU) and hospital mortality, ICU and hospital length of stay (LOS), and time to re-intubation. Subgroup analyses considered "prophylactic" versus "therapeutic" NRS application and subpopulations (high-risk, low-risk, post-surgical and hypoxaemic patients). METHODS: We undertook a systematic review and network meta-analysis (Research Registry: reviewregistry1435). PubMed, Embase, CENTRAL, Scopus and Web of Science were searched (from inception until 22 June 2022). Randomised controlled trials (RCTs) investigating the use of NRS after extubation in ICU adult patients were included. RESULTS: 32 RCTs entered the quantitative analysis (5063 patients). Compared with conventional oxygen therapy, NRS overall reduced re-intubations and VAP (moderate certainty). NIV decreased hospital mortality (moderate certainty), and hospital and ICU LOS (low and very low certainty, respectively), and increased discomfort (moderate certainty). Prophylactic NRS did not prevent extubation failure in low-risk or hypoxaemic patients. CONCLUSION: Prophylactic NRS may reduce the rate of post-extubation respiratory failure in ICU patients.


Asunto(s)
Ventilación no Invasiva , Neumonía Asociada al Ventilador , Insuficiencia Respiratoria , Adulto , Humanos , Extubación Traqueal/efectos adversos , Metaanálisis en Red , Respiración Artificial/efectos adversos , Ventilación no Invasiva/efectos adversos , Insuficiencia Respiratoria/terapia , Oxígeno , Ensayos Clínicos Controlados Aleatorios como Asunto
20.
Neurocrit Care ; 39(1): 241-249, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36828982

RESUMEN

Delayed cerebral ischemia (DCI) is still a significant cause of death and disability after aneurysmal subarachnoid hemorrhage. Cerebral vasospasm represents one of the most reported mechanisms associated with DCI. The management of DCI-related vasospasm remains a significant challenge for clinicians; induced hypertension, intraarterial vasodilators, and/or intracranial vessel angioplasty-particularly in refractory or recurrent cases-are the most used therapies. Because an essential role in the pathophysiology of cerebral vasospasm has been attributed to the adrenergic sympathetic nerves, a "sympatholytic" intervention, consisting of a temporary interruption of the sympathetic pathways using local anesthetics, has been advocated to minimize the vascular narrowing and reverse the consequences of cerebral vasospasm on tissue perfusion. In this review, we have analyzed the existing literature on the block of the cervical ganglions, particularly the stellate ganglion, in managing refractory cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. These findings could help clinicians to understand the potential role of such intervention and to develop future interventional trials in this setting.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Hemorragia Subaracnoidea/complicaciones , Vasoespasmo Intracraneal/terapia , Vasoespasmo Intracraneal/complicaciones , Isquemia Encefálica/complicaciones , Isquemia Encefálica/terapia , Infarto Cerebral/complicaciones , Simpatectomía/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...