Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
NPJ Precis Oncol ; 8(1): 116, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783045

RESUMEN

Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous malignancy that remains a significant challenge in clinical management due to frequent treatment failures and pronounced therapy resistance. While metabolic dysregulation appears to be a critical factor in this scenario, comprehensive analyses of the metabolic HNSCC landscape and its impact on clinical outcomes are lacking. This study utilized transcriptomic data from four independent clinical cohorts to investigate metabolic heterogeneity in HNSCC and define metabolic pathway-based subtypes (MPS). In HPV-negative HNSCCs, MPS1 and MPS2 were identified, while MPS3 was enriched in HPV-positive cases. MPS classification was associated with clinical outcome post adjuvant radio(chemo)therapy, with MPS1 consistently exhibiting the highest risk of therapeutic failure. MPS1 was uniquely characterized by upregulation of glycan (particularly chondroitin/dermatan sulfate) metabolism genes. Immunohistochemistry and pilot mass spectrometry imaging analyses confirmed this at metabolite level. The histological context and single-cell RNA sequencing data identified the malignant cells as key contributors. Globally, MPS1 was distinguished by a unique transcriptomic landscape associated with increased disease aggressiveness, featuring motifs related to epithelial-mesenchymal transition, immune signaling, cancer stemness, tumor microenvironment assembly, and oncogenic signaling. This translated into a distinct histological appearance marked by extensive extracellular matrix remodeling, abundant spindle-shaped cancer-associated fibroblasts, and intimately intertwined populations of malignant and stromal cells. Proof-of-concept data from orthotopic xenotransplants replicated the MPS phenotypes on the histological and transcriptome levels. In summary, this study introduces a metabolic pathway-based classification of HNSCC, pinpointing glycan metabolism-enriched MPS1 as the most challenging subgroup that necessitates alternative therapeutic strategies.

2.
ACS Chem Biol ; 17(3): 654-660, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35230809

RESUMEN

Determining cell death mechanisms occurring in patient and animal tissues is a longstanding goal that requires suitable biomarkers and accurate quantification. However, effective methods remain elusive. To develop more powerful and unbiased analytic frameworks, we developed a machine learning approach for automated cell death classification. Image sets were collected of HT-1080 fibrosarcoma cells undergoing ferroptosis or apoptosis and stained with an anti-transferrin receptor 1 (TfR1) antibody, together with nuclear and F-actin staining. Features were extracted using high-content-analysis software, and a classifier was constructed by fitting a multinomial logistic lasso regression model to the data. The prediction accuracy of the classifier within three classes (control, ferroptosis, apoptosis) was 93%. Thus, TfR1 staining, combined with nuclear and F-actin staining, can reliably detect both apoptotic and ferroptotis cells when cell features are analyzed in an unbiased manner using machine learning, providing a method for unbiased analysis of modes of cell death.


Asunto(s)
Ferroptosis , Receptores de Transferrina , Actinas , Apoptosis , Biomarcadores , Humanos , Aprendizaje Automático
3.
Nat Protoc ; 16(11): 4963-4991, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697469

RESUMEN

The clonogenic assay measures the capacity of single cells to form colonies in vitro. It is widely used to identify and quantify self-renewing mammalian cells derived from in vitro cultures as well as from ex vivo tissue preparations of different origins. Varying research questions and the heterogeneous growth requirements of individual cell model systems led to the development of several assay principles and formats that differ with regard to their conceptual setup, 2D or 3D culture conditions, optional cytotoxic treatments and subsequent mathematical analysis. The protocol presented here is based on the initial clonogenic assay protocol as developed by Puck and Marcus more than 60 years ago. It updates and extends the 2006 Nature Protocols article by Franken et al. It discusses different strategies and principles to analyze clonogenic growth in vitro and presents the clonogenic assay in a modular protocol framework enabling a diversity of formats and measures to optimize determination of clonogenic growth parameters. We put particular focus on the phenomenon of cellular cooperation and consideration of how this can affect the mathematical analysis of survival data. This protocol is applicable to any mammalian cell model system from which single-cell suspensions can be prepared and which contains at least a small fraction of cells with self-renewing capacity in vitro. Depending on the cell system used, the entire procedure takes ~2-10 weeks, with a total hands-on time of <20 h per biological replicate.


Asunto(s)
Modelos Biológicos
4.
Mol Oncol ; 15(4): 1040-1053, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340247

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) have poor clinical outcome owing to therapy resistance and frequent recurrences that are among others attributable to tumor cells in partial epithelial-to-mesenchymal transition (pEMT). We compared side-by-side software-based and visual quantification of immunohistochemistry (IHC) staining of epithelial marker EpCAM and EMT regulator Slug in n = 102 primary HNSCC to assess optimal analysis protocols. IHC scores incorporated expression levels and percentages of positive cells. Digital and visual evaluation of membrane-associated EpCAM yielded correlating scorings, whereas visual evaluation of nuclear Slug resulted in significantly higher overall scores. Multivariable Cox proportional hazard analysis defined the median EpCAM expression levels resulting from visual quantification as an independent prognostic factor of overall survival. Slug expression levels resulting from digital quantification were an independent prognostic factor of recurrence-free survival, locoregional recurrence-free survival, and disease-specific survival. Hence, we propose to use visual assessment for the membrane-associated EpCAM protein, whereas nuclear protein Slug assessment was more accurate following digital measurement.


Asunto(s)
Molécula de Adhesión Celular Epitelial/genética , Transición Epitelial-Mesenquimal , Factores de Transcripción de la Familia Snail/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Adulto Joven
5.
Neurooncol Adv ; 2(1): vdaa137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33305269

RESUMEN

BACKGROUND: The potential benefit of risk stratification using a 4-miRNA signature in combination with MGMT promoter methylation in IDH1/2 wild-type glioblastoma patients was assessed. METHODS: Primary tumors from 102 patients with comparable treatment from the LMU Munich (n = 37), the University Hospital Düsseldorf (n = 33), and The Cancer Genome Atlas (n = 32) were included. Risk groups were built using expressions of hsa-let-7a-5p, hsa-let-7b-5p, hsa-miR-615-5p, and hsa-miR-125a-5p to assess prognostic performance in overall survival (OS). MGMT promoter methylation and age were considered as cofactors. Integrated miRNA, DNA methylome, and transcriptome analysis were used to explore the functional impact of signature miRNAs. RESULTS: The 4-miRNA signature defined high-risk (n = 46, median OS: 15.8 months) and low-risk patients (n = 56, median OS: 20.7 months; univariable Cox proportional hazard analysis: hazard ratio [HR]: 1.8, 95% confidence interval [CI]: 1.14-2.83, P = .01). The multivariable Cox proportional hazard model including the 4-miRNA signature (P = .161), MGMT promoter methylation (P < .001), and age (P = .034) significantly predicted OS (Log-rank P < .0001). Likewise to clinical routine, analysis was performed for younger (≤60 years, n = 50, median OS: 20.2 months) and older patients (>60 years, n = 52, median OS: 15.8) separately. In younger patients, the 4-miRNA signature had prognostic value (HR: 1.92, 95% CI: 0.93-3.93, P = .076). Particularly, younger, MGMT methylated, 4-miRNA signature low-risk patients (n = 18, median OS: 37.4 months) showed significantly improved survival, compared to other younger patients (n = 32, OS 18.5 months; HR: 0.33, 95% CI: 0.15-0.71, P = .003). Integrated data analysis revealed 4-miRNA signature-associated genes and pathways. CONCLUSION: The prognostic 4-miRNA signature in combination with MGMT promoter methylation improved risk stratification with the potential for therapeutic substratification, especially of younger patients.

6.
Radiat Oncol ; 15(1): 248, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33121517

RESUMEN

BACKGROUND: The clonogenic assay is a versatile and frequently used tool to quantify reproductive cell survival in vitro. Current state-of-the-art analysis relies on plating efficiency-based calculations which assume a linear correlation between the number of cells seeded and the number of colonies counted. The present study was designed to test the validity of this assumption and to evaluate the robustness of clonogenic survival results obtained. METHODS: A panel of 50 established cancer cell lines was used for comprehensive evaluation of the clonogenic assay procedure and data analysis. We assessed the performance of plating efficiency-based calculations and examined the influence of critical experimental parameters, such as cell density seeded, assay volume, incubation time, as well as the cell line-intrinsic factor of cellular cooperation by auto-/paracrine stimulation. Our findings were integrated into a novel mathematical approach for the analysis of clonogenic survival data. RESULTS: For various cell lines, clonogenic growth behavior failed to be adequately described by a constant plating efficiency, since the density of cells seeded severely influenced the extent and the dynamics of clonogenic growth. This strongly impaired the robustness of survival calculations obtained by the current state-of-the-art method using plating efficiency-based normalization. A novel mathematical approach utilizing power regression and interpolation of matched colony numbers at different irradiation doses applied to the same dataset substantially reduced the impact of cell density on survival results. Cellular cooperation was observed to be responsible for the non-linear clonogenic growth behavior of a relevant number of cell lines and the impairment of survival calculations. With 28/50 cell lines of different tumor entities showing moderate to high degrees of cellular cooperation, this phenomenon was found to be unexpectedly common. CONCLUSIONS: Our study reveals that plating efficiency-based analysis of clonogenic survival data is profoundly compromised by cellular cooperation resulting in strongly underestimated assay-intrinsic errors in a relevant proportion of established cancer cell lines. This severely questions the use of plating efficiency-based calculations in studies aiming to achieve more than semiquantitative results. The novel approach presented here accounts for the phenomenon of cellular cooperation and allows the extraction of clonogenic survival results with clearly improved robustness.


Asunto(s)
Comunicación Celular , Ensayo de Tumor de Célula Madre/métodos , Supervivencia Celular , Humanos , Células Tumorales Cultivadas
7.
Radiat Oncol ; 15(1): 109, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410693

RESUMEN

BACKGROUND: Prognostic models based on high-dimensional omics data generated from clinical patient samples, such as tumor tissues or biopsies, are increasingly used for prognosis of radio-therapeutic success. The model development process requires two independent discovery and validation data sets. Each of them may contain samples collected in a single center or a collection of samples from multiple centers. Multi-center data tend to be more heterogeneous than single-center data but are less affected by potential site-specific biases. Optimal use of limited data resources for discovery and validation with respect to the expected success of a study requires dispassionate, objective decision-making. In this work, we addressed the impact of the choice of single-center and multi-center data as discovery and validation data sets, and assessed how this impact depends on the three data characteristics signal strength, number of informative features and sample size. METHODS: We set up a simulation study to quantify the predictive performance of a model trained and validated on different combinations of in silico single-center and multi-center data. The standard bioinformatical analysis workflow of batch correction, feature selection and parameter estimation was emulated. For the determination of model quality, four measures were used: false discovery rate, prediction error, chance of successful validation (significant correlation of predicted and true validation data outcome) and model calibration. RESULTS: In agreement with literature about generalizability of signatures, prognostic models fitted to multi-center data consistently outperformed their single-center counterparts when the prediction error was the quality criterion of interest. However, for low signal strengths and small sample sizes, single-center discovery sets showed superior performance with respect to false discovery rate and chance of successful validation. CONCLUSIONS: With regard to decision making, this simulation study underlines the importance of study aims being defined precisely a priori. Minimization of the prediction error requires multi-center discovery data, whereas single-center data are preferable with respect to false discovery rate and chance of successful validation when the expected signal or sample size is low. In contrast, the choice of validation data solely affects the quality of the estimator of the prediction error, which was more precise on multi-center validation data.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Perfilación de la Expresión Génica/métodos , Estudios Multicéntricos como Asunto , Neoplasias/radioterapia , Humanos , Pronóstico , Tolerancia a Radiación/genética
8.
Clin Cancer Res ; 25(5): 1505-1516, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30171046

RESUMEN

PURPOSE: Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is associated with unfavorable prognosis, while independent prognostic markers remain to be defined. EXPERIMENTAL DESIGN: We retrospectively performed miRNA expression profiling. Patients were operated for locally advanced HPV-negative HNSCC and had received radiochemotherapy in eight different hospitals (DKTK-ROG; n = 85). Selection fulfilled comparable demographic, treatment, and follow-up characteristics. Findings were validated in an independent single-center patient sample (LMU-KKG; n = 77). A prognostic miRNA signature was developed for freedom from recurrence and tested for other endpoints. Recursive-partitioning analysis was performed on the miRNA signature, tumor and nodal stage, and extracapsular nodal spread. Technical validation used qRT-PCR. An miRNA-mRNA target network was generated and analyzed. RESULTS: For DKTK-ROG and LMU-KKG patients, the median follow-up was 5.1 and 5.3 years, and the 5-year freedom from recurrence rate was 63.5% and 75.3%, respectively. A five-miRNA signature (hsa-let-7g-3p, hsa-miR-6508-5p, hsa-miR-210-5p, hsa-miR-4306, and hsa-miR-7161-3p) predicted freedom from recurrence in DKTK-ROG [hazard ratio (HR) 4.42; 95% confidence interval (CI), 1.98-9.88, P < 0.001], which was confirmed in LMU-KKG (HR 4.24; 95% CI, 1.40-12.81, P = 0.005). The signature also predicted overall survival (HR 3.03; 95% CI, 1.50-6.12, P = 0.001), recurrence-free survival (HR 3.16; 95% CI, 1.65-6.04, P < 0.001), and disease-specific survival (HR 5.12; 95% CI, 1.88-13.92, P < 0.001), all confirmed in LMU-KKG data. Adjustment for relevant covariates maintained the miRNA signature predicting all endpoints. Recursive-partitioning analysis of both samples combined classified patients into low (n = 17), low-intermediate (n = 80), high-intermediate (n = 48), or high risk (n = 17) for recurrence (P < 0.001). CONCLUSIONS: The five-miRNA signature is a strong and independent prognostic factor for disease recurrence and survival of patients with HPV-negative HNSCC.See related commentary by Clump et al., p. 1441.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de Cabeza y Cuello/etiología , Neoplasias de Cabeza y Cuello/mortalidad , MicroARNs/genética , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Femenino , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Papillomaviridae , Infecciones por Papillomavirus/complicaciones , Pronóstico , Modelos de Riesgos Proporcionales , Resultado del Tratamiento
9.
Int J Radiat Biol ; 94(11): 1017-1026, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30028637

RESUMEN

PURPOSE: Automated detection of dicentric chromosomes from a large number of cells was applied to study age-dependent radiosensitivity after in vitro CT exposure of blood from healthy donors. MATERIALS AND METHODS: Blood samples from newborns, children (2-5 years) and adults (20-50 years) were exposed in vitro to 0 mGy, 41 mGy and 978 mGy using a CT equipment. In this study, automated scoring based on 13,000-31,000 cells/dose point/age group was performed. Results for control and low dose points were validated by manually counting about 26,000 cells/dose point/age group. RESULTS: For all age groups, the high number of analyzed cells enabled the detection of a significant increase in the frequency of radiation induced dicentric chromosomes in cells exposed to 41 mGy as compared to control cells. Moreover, differences between the age groups could be resolved for the low dose: young donors showed significantly increased risk for induced dicentrics at 41 mGy compared to adults. CONCLUSIONS: The results very clearly demonstrate that the automated dicentric scoring method is capable of discerning radiation induced biomarkers in the low dose range (<100 mGy) and thus may open possibilities for large-scale molecular epidemiology studies in radiation protection.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Exposición a la Radiación/efectos adversos , Tolerancia a Radiación/genética , Tomografía Computarizada por Rayos X/efectos adversos , Adulto , Automatización , Preescolar , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Int J Cancer ; 143(6): 1505-1515, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29663366

RESUMEN

Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number alterations (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients. We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68 matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise forward-backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the training data set, which could be subsequently validated in the validation data set (p value < 0.05). The signature consisted of nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level.


Asunto(s)
Neoplasias de la Mama/genética , Accidente Nuclear de Chernóbil , Variaciones en el Número de Copia de ADN , Neoplasias Inducidas por Radiación/genética , Exposición a la Radiación/efectos adversos , Adulto , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/patología , Estudios de Cohortes , Hibridación Genómica Comparativa , Femenino , Estudios de Seguimiento , Dosificación de Gen , Genómica , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/patología , Pronóstico , Curva ROC , Ucrania/epidemiología
11.
Int J Radiat Biol ; 94(3): 272-281, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29319401

RESUMEN

PURPOSE: Age dependent radiation sensitivity for DNA damage after in vitro blood exposure by computer tomography (CT) was investigated. MATERIALS AND METHODS: Radiation biomarkers (dicentrics and gammaH2AX) in blood samples of newborns, children under five years and adults after sham exposure (0 mGy), low-dose (41 mGy) and high-dose (978 mGy) in vitro CT exposure were analyzed. RESULTS: Significantly higher levels of dicentric induction were found for the single and combined newborns/children group compared to adults, by a factor of 1.48 (95% CI 1.30-1.68), after exposure to 978 mGy. Although a significant dose response for damage induction and dose-dependent repair was found, the gammaH2AX assay did not show an age-dependent increase in DNA damage in newborns/children compared to adults. This was the case for the gammaH2AX levels after repair time intervals of 30 minutes and 24 hours, after correcting for the underlying background damage. For the low dose of 41 mGy, the power of the dicentric assay was also not sufficient to detect an age-dependent effect in the sample size investigated. CONCLUSION: A 1.5-fold increased level of dicentric aberrations is detected in newborns and children under five years after 1 Gy radiation exposure.


Asunto(s)
Envejecimiento/genética , Envejecimiento/efectos de la radiación , Daño del ADN , Tomografía Computarizada por Rayos X/efectos adversos , Adulto , Envejecimiento/metabolismo , Niño , Aberraciones Cromosómicas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Histonas/metabolismo , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Radiat Environ Biophys ; 57(2): 99-113, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29327260

RESUMEN

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.


Asunto(s)
Catarata/genética , Traumatismos Experimentales por Radiación/genética , Animales , Catarata/etiología , Aberraciones Cromosómicas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Estimación de Kaplan-Meier , Masculino , Ratones , Traumatismos Experimentales por Radiación/etiología , Protección Radiológica , Medición de Riesgo , Telómero/efectos de la radiación , Factores de Tiempo
13.
Radiat Prot Dosimetry ; 178(4): 382-404, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981844

RESUMEN

Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.


Asunto(s)
Dosis de Radiación , Radiometría/métodos , Incertidumbre , Carga Corporal (Radioterapia) , Europa (Continente) , Humanos , Monitoreo de Radiación , Radiación Ionizante , Medición de Riesgo/métodos
14.
Biophys J ; 112(9): 1984-1996, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494968

RESUMEN

The Escherichia coli lac operon is regulated by a positive feedback loop whose potential to generate an all-or-none response in single cells has been a paradigm for bistable gene expression. However, so far bistable lac induction has only been observed using gratuitous inducers, raising the question about the biological relevance of bistable lac induction in the natural setting with lactose as the inducer. In fact, the existing experimental evidence points to a graded rather than an all-or-none response in the natural lactose uptake system. In contrast, predictions based on computational models of the lactose uptake pathway remain controversial. Although some argue in favor of bistability, others argue against it. Here, we reinvestigate lac operon expression in single cells using a combined experimental/modeling approach. To this end, we parameterize a well-supported mathematical model using transient measurements of LacZ activity upon induction with different amounts of lactose. The resulting model predicts a monostable induction curve for the wild-type system, but indicates that overexpression of the LacI repressor would drive the system into the bistable regime. Both predictions were confirmed experimentally supporting the view that the wild-type lac induction circuit generates a graded response rather than bistability. More interestingly, we find that the lac induction curve exhibits a pronounced maximum at intermediate lactose concentrations. Supported by our data, a model-based analysis suggests that the nonmonotonic response results from saturation of the LacI repressor at low inducer concentrations and dilution of Lac enzymes due to an increased growth rate beyond the saturation point. We speculate that the observed maximum in the lac expression level helps to save cellular resources by limiting Lac enzyme expression at high inducer concentrations.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Operón Lac , Lactosa/metabolismo , Modelos Biológicos , Medios de Cultivo , Inducción Enzimática , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Galactosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Microscopía Fluorescente , Ácido Succínico/metabolismo , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
15.
Int J Radiat Biol ; 93(1): 127-135, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27572921

RESUMEN

PURPOSE: Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. MATERIALS AND METHODS: Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. RESULTS: The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. CONCLUSIONS: Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.


Asunto(s)
Algoritmos , Bioensayo/métodos , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Triaje/métodos , Teorema de Bayes , Europa (Continente) , Humanos , Guías de Práctica Clínica como Asunto , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Int J Radiat Biol ; 93(1): 20-29, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27766931

RESUMEN

PURPOSE: Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. MATERIALS AND METHODS: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. RESULTS: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. CONCLUSIONS: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.


Asunto(s)
Bioensayo/métodos , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos/métodos , Garantía de la Calidad de Atención de Salud , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Bioensayo/normas , Europa (Continente) , Humanos , Linfocitos/efectos de la radiación , Monitoreo de Radiación/normas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Int J Radiat Biol ; 91(8): 653-63, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25968559

RESUMEN

PURPOSE: To conduct a feasibility study on the application of the γ-H2AX foci assay as an exposure biomarker in a prospective multicentre paediatric radiology setting. MATERIALS AND METHODS: A set of in vitro experiments was performed to evaluate technical hurdles related to biological sample collection in a paediatric radiology setting (small blood sample volume), processing and storing of blood samples (effect of storing blood at 4°C), the reliability of foci scoring for low-doses (merge γ-H2AX/53BP1 scoring), as well as the impact of contrast agent administration as potential confounding factor. Given the exploratory nature of this study and the ethical constraints related to paediatric blood sampling, blood samples from adult volunteers were used for these experiments. In order to test the feasibility of pooling the γ-H2AX data when different centres are involved in an international multicentre study, two intercomparison studies in the low-dose range (10-500 mGy) were performed. RESULTS: Determination of the number of X-ray induced γ-H2AX foci is feasible with one 2 ml blood sample pre- and post-computed tomography (CT) scan. Lymphocyte isolation and fixation on slides is necessary within 5 h of blood sampling to guarantee reliable results. The possible enhancement effect of contrast medium on the induction of DNA DSB in a patient study can be ruled out if radiation doses and the contrast agent concentration are within diagnostic ranges. The intercomparison studies using in vitro irradiated blood samples showed that the participating laboratories, executing successfully the γ-H2AX foci assay in lymphocytes, were able to rank blind samples in order of lowest to highest radiation dose based on mean foci/cell counts. The dose response of all intercomparison data shows that a dose point of 10 mGy could be distinguished from the sham-irradiated control (p = 0.006). CONCLUSIONS: The results demonstrate that it is feasible to apply the γ-H2AX foci assay as a cellular biomarker of exposure in a multicentre prospective study in paediatric CT imaging after validating it in an in vivo international pilot study on paediatric patients.


Asunto(s)
Bioensayo/métodos , Daño del ADN/genética , Histonas/genética , Linfocitos/efectos de la radiación , Exposición a la Radiación/análisis , Tomografía Computarizada por Rayos X/métodos , Adolescente , Recolección de Muestras de Sangre/métodos , Células Cultivadas , Niño , Preescolar , Relación Dosis-Respuesta en la Radiación , Europa (Continente)/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Linfocitos/fisiología , Masculino , Pruebas de Mutagenicidad/métodos , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Rayos X
18.
Psychophysiology ; 46(4): 747-57, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19386045

RESUMEN

Event-related potentials (ERPs) were recorded by measuring a dense sensor EEG from eight healthy volunteers in a visual oddball experiment. Single trials were analyzed with an extremely simple high-dimensional version of discriminant analysis. The question was how many of the target trials contribute to the average P3, and to test whether other components in the ERP are sensitive to discriminate between target and non-target trials. One common classification rule for all participants expressing the P3 component correctly classified 88% of the ERPs of all subjects in response to a target or non-target trial. For four of the eight participants, there were strong differences in an early ERP component over the occipital recording sites. Their individual classification rules, obtained from the training data in the time interval up to 200 ms, correctly classified 85% of the trials of the test data.


Asunto(s)
Electroencefalografía/clasificación , Potenciales Evocados/fisiología , Adulto , Interpretación Estadística de Datos , Humanos , Aprendizaje/fisiología , Masculino , Desempeño Psicomotor/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA