Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Cell Mol Life Sci ; 81(1): 250, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847861

RESUMEN

Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Oxidación-Reducción , Transducción de Señal , Respuesta de Proteína Desplegada , Humanos , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Estrés del Retículo Endoplásmico
3.
Cell Mol Life Sci ; 80(12): 352, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935993

RESUMEN

To be functional, some RNAs require a processing step involving splicing events. Each splicing event necessitates an RNA ligation step. RNA ligation is a process that can be achieved with various intermediaries such as self-catalysing RNAs, 5'-3' and 3'-5' RNA ligases. While several types of RNA ligation mechanisms occur in human, RtcB is the only 3'-5' RNA ligase identified in human cells to date. RtcB RNA ligation activity is well known to be essential for the splicing of XBP1, an essential transcription factor of the unfolded protein response; as well as for the maturation of specific intron-containing tRNAs. As such, RtcB is a core factor in protein synthesis and homeostasis. Taking advantage of the high homology between RtcB orthologues in archaea, bacteria and eukaryotes, this review will provide an introduction to the structure of RtcB and the mechanism of 3'-5' RNA ligation. This analysis is followed by a description of the mechanisms regulating RtcB activity and localisation, its known partners and its various functions from bacteria to human with a specific focus on human cancer.


Asunto(s)
ARN Ligasa (ATP) , Factores de Transcripción , Humanos , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/metabolismo , Factores de Transcripción/metabolismo , ARN/metabolismo , Respuesta de Proteína Desplegada , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Empalme del ARN/genética
5.
Mol Neurobiol ; 60(3): 1476-1485, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36478320

RESUMEN

Examination of post-mortem brain tissues has previously revealed a strong association between Parkinson's disease (PD) pathophysiology and endoplasmic reticulum (ER) stress. Evidence in the literature regarding the circulation of ER stress-regulated factors released from neurons provides a rationale for investigating ER stress biomarkers in the blood to aid diagnosis of PD. The levels of ER stress-regulated proteins in serum collected from 29 PD patients and 24 non-PD controls were measured using enzyme-linked immunosorbent assays. A panel of four biomarkers, protein disulfide-isomerase A1, protein disulfide-isomerase A3, mesencephalic astrocyte-derived neurotrophic factor, and clusterin, together with age and gender had higher ability (area under the curve 0.64, sensitivity 66%, specificity 57%) and net benefit to discriminate PD patients from the non-PD group compared with other analyzed models. Addition of oligomeric and total α-synuclein to the model did not improve the diagnostic power of the biomarker panel. We provide evidence that ER stress-regulated proteins merit further investigation for their potential as diagnostic biomarkers of PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , alfa-Sinucleína/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Chaperonas Moleculares , Neuronas/metabolismo
6.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188814, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36195277

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer. Despite therapeutic advances, long term survival in patients diagnosed with advanced disease is low. Efforts to understand the mechanisms promoting disease progression will likely produce novel therapeutic targets. The unfolded protein response (UPR) is activated when unfolded protein accumulates in the endoplasmic reticulum (ER) upon cellular stress. Constitutive UPR activation is a characteristic of many malignancies. We discuss the accumulating evidence that describes a role for the UPR in ccRCC. Studies focused on UPR signalling may provide compelling avenues for therapeutic intervention in the future.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Estrés del Retículo Endoplásmico/fisiología , Oxígeno , Respuesta de Proteína Desplegada , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Carcinogénesis , Transformación Celular Neoplásica , Resistencia a Medicamentos
8.
J Cell Biol ; 221(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35544036

RESUMEN

Logue, Gorman, and Samali highlight a study by Guttman and colleagues (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202111068) that shows exogenous antigen peptides imported into the ER can activate the ER stress sensor IRE1α, attenuating cross-presentation by dendritic cells.


Asunto(s)
Presentación de Antígeno , Endorribonucleasas , Neoplasias , Proteínas Serina-Treonina Quinasas , Células Dendríticas/inmunología , Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Humanos , Neoplasias/inmunología , Péptidos , Proteínas Serina-Treonina Quinasas/genética
9.
Nat Commun ; 13(1): 2493, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524156

RESUMEN

IRE1α is constitutively active in several cancers and can contribute to cancer progression. Activated IRE1α cleaves XBP1 mRNA, a key step in production of the transcription factor XBP1s. In addition, IRE1α cleaves select mRNAs through regulated IRE1α-dependent decay (RIDD). Accumulating evidence implicates IRE1α in the regulation of lipid metabolism. However, the roles of XBP1s and RIDD in this process remain ill-defined. In this study, transcriptome and lipidome profiling of triple negative breast cancer cells subjected to pharmacological inhibition of IRE1α reveals changes in lipid metabolism genes associated with accumulation of triacylglycerols (TAGs). We identify DGAT2 mRNA, encoding the rate-limiting enzyme in TAG biosynthesis, as a RIDD target. Inhibition of IRE1α, leads to DGAT2-dependent accumulation of TAGs in lipid droplets and sensitizes cells to nutritional stress, which is rescued by treatment with the DGAT2 inhibitor PF-06424439. Our results highlight the importance of IRE1α RIDD activity in reprograming cellular lipid metabolism.


Asunto(s)
Endorribonucleasas , Metabolismo de los Lípidos , Neoplasias , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
11.
Trends Pharmacol Sci ; 43(2): 97-109, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34893351

RESUMEN

Given the unprecedented global pandemic of obesity, a better understanding of the etiology of adiposity will be necessary to ensure effective management of obesity and related complications. Among the various potential factors contributing to obesity, endoplasmic reticulum (ER) stress refers to a state of excessive protein unfolding or misfolding that is commonly found in metabolic diseases including diabetes mellitus, insulin resistance (IR), and non-alcoholic fatty liver disease, although its role in obesogenesis remains controversial. ER stress is thought to drive adiposity by dampening energy expenditure, making ER stress a likely therapeutic target for the management of obesity. We summarize the role of ER stress and the ER stress response in the onset and development of obesity, and discuss the underlying mechanisms involved with a view to identifying novel therapeutic strategies for obesity prevention and management.


Asunto(s)
Resistencia a la Insulina , Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Estrés del Retículo Endoplásmico , Humanos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/metabolismo , Obesidad/terapia
12.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638414

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children, and is associated with a poor prognosis in patients presenting with recurrent or metastatic disease. The unfolded protein response (UPR) plays pivotal roles in tumor development and resistance to therapy, including RMS. METHODS: In this study, we used immunohistochemistry and a tissue microarray (TMA) on human RMS and normal skeletal muscle to evaluate the expression of key UPR proteins (GRP78/BiP, IRE1α and cytosolic/nuclear XBP1 (spliced XBP1-sXBP1)) in the four main RMS subtypes: alveolar (ARMS), embryonal (ERMS), pleomorphic (PRMS) and sclerosing/spindle cell (SRMS) RMS. We also investigated the correlation of these proteins with the risk of RMS and several clinicopathological indices, such as lymph node involvement, distant metastasis, tumor stage and tumor scores. RESULTS: Our results revealed that the expression of BiP, sXBP1, and IRE1α, but not cytosolic XBP1, are significantly associated with RMS (BiP and sXBP1 p-value = 0.0001, IRE1 p-value = 0.001) in all of the studied types of RMS tumors (n = 192) compared to normal skeletal muscle tissues (n = 16). In addition, significant correlations of BiP with the lymph node score (p = 0.05), and of IRE1α (p value = 0.004), cytosolic XBP1 (p = 0.001) and sXBP1 (p value = 0.001) with the stage score were observed. At the subtype level, BiP and sXBP1 expression were significantly associated with all subtypes of RMS, whereas IRE1α was associated with ARMS, PRMS and ERMS, and cytosolic XBP1 expression was associated with ARMS and SRMS. Importantly, the expression levels of IRE1α and sXBP1 were more pronounced in ARMS than in any of the other subtypes. The results also showed correlations of BiP with the lymph node score in ARMS (p value = 0.05), and of sXBP1 with the tumor score in PRMS (p value = 0.002). CONCLUSIONS: In summary, this study demonstrates that the overall UPR is upregulated and, more specifically, that the IRE1/sXBP1 axis is active in RMS. The subtype and stage-specific dependency on the UPR machinery in RMS may open new avenues for the development of novel targeted therapeutic strategies and the identification of specific tumor markers in this rare but deadly childhood and young-adult disease.

13.
J Cell Mol Med ; 25(18): 8809-8820, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363313

RESUMEN

Stress-induced apoptosis is mediated primarily through the intrinsic pathway that involves caspase-9. We previously reported that in caspase-9-deficient cells, a protein complex containing ATG5 and Fas-associated death domain (FADD) facilitated caspase-8 activation and cell death in response to endoplasmic reticulum (ER) stress. Here, we investigated whether this complex could be activated by other forms of cell stress. We show that diverse stress stimuli, including etoposide, brefeldin A and paclitaxel, as well as heat stress and gamma-irradiation, caused formation of a complex containing ATG5-ATG12, FADD and caspase-8 leading to activation of downstream caspases in caspase-9-deficient cells. We termed this complex the 'stressosome'. However, in these cells, only ER stress and heat shock led to stressosome-dependent cell death. Using in silico molecular modelling, we propose the structure of the stressosome complex, with FADD acting as an adaptor protein, interacting with pro-caspase-8 through their respective death effector domains (DEDs) and interacting with ATG5-ATG12 through its death domain (DD). This suggests that the complex could be regulated by cellular FADD-like interleukin-1ß-converting enzyme-inhibitory protein (cFLIPL ), which was confirmed experimentally. This study provides strong evidence for an alternative mechanism of caspase-8 activation involving the stressosome complex.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Estrés del Retículo Endoplásmico , Animales , Fibroblastos , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones
14.
Eur J Inorg Chem ; 2021(20): 1921-1928, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34248416

RESUMEN

A series of gold(I) complexes with the general formula [Au(L2)(L')] (L2=4-phenyl-N-(prop-2-yn-1-yl)quinazoline-2-carboxamide, L'=PPh3 (triphenylphosphine), 1; TPA (1,3,5-triaza-7-phosphaadamantane), 2, and Me2-imy (1,3-dimethylimidazol-2-ylidene), 3) were synthesized and fully characterized by spectroscopic methods. The alkynyl ligand L2 belongs to the quinazoline carboxamide class of ligands that are known to bind to the translocator protein (TSPO) at the outer mitochondrial membrane. 1 and 2 exert cytotoxic effects in bladder cancer cells with IC50 values in the low micromolar range. Further mechanistic analysis indicated that the two complexes both act by inducing reactive oxygen species and caspase-mediated apoptosis. The complexes inhibit thioredoxin reductase, an established target of anticancer gold(I) complexes. Docking studies confirmed that after ligand exchange the free ligand L2 can interact with the TSPO binding site.

15.
Cells ; 10(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209019

RESUMEN

Autophagy, apoptosis, and the unfolded protein response (UPR) are fundamental biological processes essential for manifold cellular functions in health and disease. Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal pulmonary disorder associated with aging that has limited therapies, reflecting our incomplete understanding. We conducted an observational study linking molecular markers of cell stress response pathways (UPR: BiP, XBP1; apoptosis: cleaved caspase-3; autophagy: LC3ß) in lung tissues from IPF patients and correlated the expression of these protein markers to each subject's lung function measures. We hypothesized that changes in lung tissue expression of apoptosis, autophagy, and UPR markers correlate with lung function deficits in IPF. The cell stress markers BiP, XBP1, LC3ß puncta, and cleaved caspase-3 were found to be elevated in IPF lungs compared to non-IPF lungs, and, further, BiP and cleaved caspase-3 co-localized in IPF lungs. Considering lung function independently, we observed that increased XBP1, BiP, and cleaved caspase-3 were each associated with reduced lung function (FEV1, FVC, TLC, RV). However, increased lung tissue expression of LC3ß puncta was significantly associated with increased diffusion capacity (DLCO), an indicator of alveolar-capillary membrane function. Similarly, the co-localization of UPR (XBP1, BiP) and autophagy (LC3ß puncta) markers was positively correlated with increased lung function (FEV1, FVC, TLC, DLCO). However, the presence of LC3ß puncta can indicate either autophagy flux inhibition or activation. While the nature of our observational cross-sectional study design does not allow conclusions regarding causal links between increased expression of these cell stress markers, lung fibrosis, and lung function decline, it does provide some insights that are hypothesis-generating and suggests that within the milieu of active UPR, changes in autophagy flux may play an important role in determining lung function. Further research is necessary to investigate the mechanisms linking UPR and autophagy in IPF and how an imbalance in these cell stress pathways can lead to progressive fibrosis and loss of lung function. We conclude by presenting five testable hypotheses that build on the research presented here. Such an understanding could eventually lead to the development of much-needed therapies for IPF.


Asunto(s)
Apoptosis , Autofagia , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/fisiopatología , Pulmón/patología , Pulmón/fisiopatología , Respuesta de Proteína Desplegada , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Prog Mol Subcell Biol ; 59: 197-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34050868

RESUMEN

The endoplasmic reticulum, as the site of synthesis for proteins in the secretory pathway has evolved select machineries to ensure the correct folding and modification of proteins. However, sometimes these quality control mechanisms fail and proteins are misfolded. Other factors, such as nutrient deprivation, hypoxia or an increased demand on protein synthesis can also cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. There are mechanisms that recognise and deal with this accumulation of protein through degradation and/or export. Many diseases are associated with aberrant quality control mechanisms, and among these, cancer has emerged as a group of diseases that rely on endoplasmic reticulum homeostasis to sustain development and growth. The knowledge of how protein quality control operates in cancer has identified opportunities for these pathways to be pharmacologically targeted, which could lead to newer or more effective treatments in the future.


Asunto(s)
Retículo Endoplásmico , Neoplasias , Proteostasis , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Pliegue de Proteína , Proteostasis/genética
17.
J Cell Mol Med ; 25(3): 1359-1370, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398919

RESUMEN

The endoplasmic reticulum (ER) is the site of protein folding and secretion, Ca2+ storage and lipid synthesis in eukaryotic cells. Disruption to protein folding or Ca2+ homeostasis in the ER leads to the accumulation of unfolded proteins, a condition known as ER stress. This leads to activation of the unfolded protein response (UPR) pathway in order to restore protein homeostasis. Three ER membrane proteins, namely inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6), sense the accumulation of unfolded/misfolded proteins and are activated, initiating an integrated transcriptional programme. Recent literature demonstrates that activation of these sensors can alter lipid enzymes, thus implicating the UPR in the regulation of lipid metabolism. Given the presence of ER stress and UPR activation in several diseases including cancer and neurodegenerative diseases, as well as the growing recognition of altered lipid metabolism in disease, it is timely to consider the role of the UPR in the regulation of lipid metabolism. This review provides an overview of the current knowledge on the impact of the three arms of the UPR on the synthesis, function and regulation of fatty acids, triglycerides, phospholipids and cholesterol.


Asunto(s)
Regulación de la Expresión Génica , Metabolismo de los Lípidos , Respuesta de Proteína Desplegada , Animales , Biomarcadores , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Redes y Vías Metabólicas
18.
Life (Basel) ; 11(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418948

RESUMEN

An important event in the unfolded protein response (UPR) is activation of the endoplasmic reticulum (ER) kinase PERK. The PERK signalling branch initially mediates a prosurvival response, which progresses to a proapoptotic response upon prolonged ER stress. However, the molecular mechanisms of PERK-mediated cell death are not well understood. Here we show that expression of the primary miR-17-92 transcript and mature miRNAs belonging to the miR-17-92 cluster are decreased during UPR. We found that miR-17-92 promoter reporter activity was reduced during UPR in a PERK-dependent manner. Furthermore, we show that activity of the miR-17-92 promoter is repressed by ectopic expression of ATF4 and NRF2. Promoter deletion analysis mapped the region responding to UPR-mediated repression to a site in the proximal region of the miR-17-92 promoter. Hypericin-mediated photo-oxidative ER damage reduced the expression of miRNAs belonging to the miR-17-92 cluster in wild-type but not in PERK-deficient cells. Importantly, ER stress-induced apoptosis was inhibited upon miR-17-92 overexpression in SH-SY5Y and H9c2 cells. Our results reveal a novel function for ATF4 and NRF2, where repression of the miR-17-92 cluster plays an important role in ER stress-mediated apoptosis. Mechanistic details are provided for the potentiation of cell death via sustained PERK signalling mediated repression of the miR-17-92 cluster.

19.
Cancers (Basel) ; 13(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445669

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.

20.
FEBS J ; 288(3): 945-960, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32446294

RESUMEN

Inositol-requiring enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease that is a major mediator of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. Tumour cells experience ER stress due to adverse environmental cues such as hypoxia or nutrient shortage and high metabolic/protein-folding demand. To cope with those stresses, cancer cells utilise IRE1 signalling as an adaptive mechanism. Here, we report the discovery of the FDA-approved compounds methotrexate, cefoperazone, folinic acid and fludarabine phosphate as IRE1 inhibitors. These were identified through a structural exploration of the IRE1 kinase domain using IRE1 peptide fragment docking and further optimisation and pharmacophore development. The inhibitors were verified to have an impact on IRE1 activity in vitro and were tested for their ability to sensitise human cell models of glioblastoma multiforme (GBM) to chemotherapy. We show that all molecules identified sensitise glioblastoma cells to the standard-of-care chemotherapy temozolomide (TMZ).


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/antagonistas & inhibidores , Peptidomiméticos/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Cefoperazona/química , Cefoperazona/metabolismo , Cefoperazona/farmacología , Línea Celular Tumoral , Aprobación de Drogas , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Leucovorina/química , Leucovorina/metabolismo , Leucovorina/farmacología , Metotrexato/química , Metotrexato/metabolismo , Metotrexato/farmacología , Estructura Molecular , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estados Unidos , United States Food and Drug Administration , Fosfato de Vidarabina/análogos & derivados , Fosfato de Vidarabina/química , Fosfato de Vidarabina/metabolismo , Fosfato de Vidarabina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...