Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 10(8): 230524, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37621656

RESUMEN

Crystalline beta zeolite molecular sieve with SiO2/Al2O3 molar ratio of 28.5 was synthesized by the hydrothermal crystallization method and examined for methanol dehydration reaction. The micro-mesoporous beta zeolite was active between 280 and 450°C. Dimethyl ether (DME) was observed as the predominant product at all reaction temperatures, with a maximum selectivity of 47.9% at 300°C and a methanol turnover frequency (TOFMeOH) of 741.9 h-1. At increased reaction temperatures, beta zeolite showed enhanced strong acid site fraction, promoting higher hydrocarbon formation following the olefin-based cycle. It was revealed that the crystallinity, porosity and acidity of beta zeolite change in the reaction environment. Amorphous carbon deposition occurred on beta zeolite, which involved a loss in crystallinity to some extent. The temperature increase showed a pore-broadening phenomenon at elevated temperature regions. Regeneration cycle testing demonstrated beta zeolite activity maintained stable throughout a 280 h time-on-stream period.

2.
ACS Appl Mater Interfaces ; 13(24): 28201-28213, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34120441

RESUMEN

Stable catalyst development for CO2 hydrogenation to methanol is a challenge in catalysis. In this study, indium (In)-promoted Cu nanoparticles supported on nanocrystalline CeO2 catalysts were prepared and explored for methanol production from CO2. In-promoted Cu catalysts with ∼1 wt % In loading showed a methanol production rate of 0.016 mol gCu-1 h-1 with 95% methanol selectivity and no loss of activity for 100 h. It is found that the addition of indium remarkably increases Cu dispersion and decreases Cu particle size. In addition led to an increased metal-support interaction, which stabilizes Cu particles against sintering during the reaction, leading to high stability and activity. In addition, density functional theory calculations suggested that the reaction is proceeding via reverse water gas shift (RWGS) mechanism where the presence of In stabilized intermediate species and lowered CO2 activation energy barriers.

3.
RSC Adv ; 10(67): 41120-41126, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-35519200

RESUMEN

Development of a chromium (Cr)-free hydrogenation catalyst is very important to replace the existing hazardous Cr based catalyst used in the furfural hydrogenation to furfuryl alcohol. Herein, we report synthesis of well-dispersed copper nanoparticles supported on hydrothermally stable magnesium doped alumina (Cu@Mg/γ-Al2O3) for selective hydrogenation of furfural to furfuryl alcohol. The prepared catalyst was characterized by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (PXRD), Surface Area Analysis (SAA), High Resolution-Transmission Electron Microscopy (HR-TEM), Temperature Programmed Reduction/Desorption (TPR/TPD) and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) to understand textural properties of the catalyst. The prepared catalyst was found to be highly active and selective with 99% conversion of furfural and 94% selectivity for furfuryl alcohol under solvent free conditions at 443.15 K and 2 MPa of hydrogen pressure. It was also observed that the Cu@Mg/γ-Al2O3 catalyst is reusable (up to six runs) while maintaining its high activity and selectivity (≥94%) in the hydrogenation of furfural to furfuryl alcohol.

4.
Chem Commun (Camb) ; (43): 5399-401, 2005 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-16261226

RESUMEN

Hydrogen peroxide in high yields can be generated with high efficiency at mild conditions (25 degrees C and atmospheric pressure) with the formation of only environment-friendly by-products (N2 and H2O) by a reduction of O2 by hydrazine from its hydrate/salt with its complete conversion in a short reaction period (

5.
Chem Commun (Camb) ; (18): 2054-5, 2004 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-15367971

RESUMEN

Incorporation of bromide anions (1.0 wt%) in supported Pd catalysts (viz. Pd supported on Al2O3, ZrO2, SiO2, H-beta or Ga2O3) leads to a drastic increase in their selectivity for H2O2 formation in the direct oxidation of H2 to H2O2 by O2(at room temperature) in an aqueous acidic (0.03 M H3PO4) reaction medium; the selectivity increase is accompanied by a large decrease in the H2O2 decomposition activity of the catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA